K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

A B D C H J K O I E

Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.

Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.

Ta thấy ngay DH // OI // CJ // KB.

Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI.    (1)

Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.

Vậy thì \(DH+BK=2OI\)                                                                                                                  (2)

Từ (1) và (2) suy ra CJ = DH + BK.

Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\)  hay \(S_{ACE}=S_{ADE}+S_{ABE}\)

3 tháng 2 2018

1 A B C D K 1 2 1 2 1 2

Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)

Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)

\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK

Tương tự ta cm được BC=CK 

=> AD+BC=DK+CK

Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)

18 tháng 12 2014

Dễ thấy SABCD = 2SADC (1)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)

Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)

Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

25 tháng 9 2018

26 tháng 12 2020
Giúp mình đi mọi người
1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn