K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

\(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x-4xy+2y-1=0-1\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Suy ra :

\(\hept{\begin{cases}2x-1=1\\1-2y=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(\hept{\begin{cases}2x-1=-1\\1-2y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy ....

28 tháng 10 2018

2xy - x + 2y = 13

\(\Leftrightarrow\) 2y(x + 1) - x - 1 = 12

\(\Leftrightarrow\) (2y - 1)(x + 1) = 12

Vì y là số tự nhiên 2y - 1 là ước lẻ của 12. Lại có x + 1 là số tự nhiên nên 2y - 1 là số tự nhiên \(\Rightarrow2y-1\in\left\{1;3\right\}\). Ta có bảng sau:

2y - 113
x + 1124
y12
x113
28 tháng 10 2018

\(2xy-x+2y=13\)

\(x\left(2y-1\right)+2y-1=12\)

\(x.\left(2y-1\right)+\left(2y-1\right)=12\)

\(\left(2y-1\right).\left(x+1\right)=12\)

\(\Rightarrow2y-1,x+1\inƯ\left(12\right)=\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm12,\right\}\)ư

mà 2y-1 là số lẻ =>\(2y-1\in\left\{\pm1,\pm3\right\}\)

=> \(x+1\in\left\{\pm12,\pm4\right\}\)

đến đây tự tính nha =)

23 tháng 8 2016

x=4 y=5

k nha

10 tháng 4 2022

Lời giải:

2xy+x−8y=14

x(2y+1)−4(2y+1)=10

(x−4)(2y+1)=10

Vì x−4,2y+1x−4,2y+1 đều là số nguyên nên ta chỉ cần xét các TH: 

(x−4,2y+1)=(10,1);(−10,−1);(2,5);(−2,−5)(nhớ rằng 2y+12y+1 lẻ)

Chúc học tốt!

3 tháng 1 2018

BÀI 1:

          \(3x+23\)\(⋮\)\(x+4\)

\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)

Ta thấy   \(3\left(x+4\right)\)\(⋮\)\(x+4\)

nên  \(11\)\(⋮\)\(x+4\)

hay   \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau  

\(x+4\)     \(-11\)     \(-1\)            \(1\)         \(11\)

\(x\)             \(-15\)      \(-5\)       \(-3\)           \(7\)

Vậy     \(x=\left\{-15;-5;-3;7\right\}\)

BÀI 2 

      \(\left(x+5\right)\left(y-3\right)=11\)

\(\Rightarrow\)\(x+5\)  và   \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau:

\(x+5\)        \(-11\)      \(-1\)          \(1\)            \(11\)

\(x\)                 \(-16\)     \(-6\)        \(-4\)             \(6\)

\(y-3\)        \(-1\)      \(-11\)         \(11\)            \(1\)

\(y\)                    \(2\)        \(-8\)            \(14\)           \(4\)

Vậy.....

    

3 tháng 1 2018

bài 1:

   3x + 23 chia hết cho x + 4

ta có: 3x + 23 chia hết cho x + 4

   mà x + 4 chia hết cho x + 4

=> 3(x + 4) chia hết cho x + 4

=> (3x + 23) - 3(x + 4)  chia hết cho x + 4

3x + 23 - 3x - 12 chia hết cho x + 4

=> 11 chia hết cho x + 4

=> x + 4 thuộc  Ư(11)

mà Ư(11)= {-11;-1;1;11}

=> x + 4 thuộc {-11;-1;1;11}

=> x thuộc {-15;-5;-3;7}

 Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4

bài 2:

       (x + 5).(y-3) = 11

 ta có bảng:

   x + 5        -11         -1            1              11

  y - 3           -1         -11          11              1

  x               -16        -6             -4             6 

  y                2          -8             14            4

vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11

Chúc bạn học giỏi ^^

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

1.

PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$

$\Leftrightarrow (x+y)^2-(y+3)^2=0$

$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$

$\Leftrightarrow (x-3)(x+2y+3)=0$

$\Rightarrow x-3=0$ hoặc $x+2y+3=0$

Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.

Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

2. 

PT $\Leftrightarrow x^2=(y^2+2y+1)+12$

$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$

$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:

TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$

TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$

TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$

TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$

3 tháng 2 2018

Ta có :

\(\left(x+3\right)\left(y-1\right)=4\)

TRƯỜNG HỢP 1 :

\(\hept{\begin{cases}x+3=1\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

TRƯỜNG HỢP 2 :

\(\hept{\begin{cases}x+3=-1\\y-1=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

TRƯỜNG HỢP 3 :

\(\hept{\begin{cases}x+3=4\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

TRƯỜNG HỢP 4 :

\(\hept{\begin{cases}x+3=-4\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\y=0\end{cases}}}\)

Vậy \(x=-2\)và \(y=5\)\(;\)\(x=-4\)và \(y=-3\)\(;\)\(x=1\)và \(y=2\)\(;\)\(x=-7\)và \(y=0\)

Chúc bạn học tốt 

3 tháng 2 2018

\(\left(x+3\right)\left(y-1\right)=?\)