K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

Ta có:

+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)

     Giải thích: \(3n^2+n+2>0\forall n\inℤ\)

+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)

     Giải thích: \(n^2+n+1>0\forall n\inℤ\)

Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương

24 tháng 7 2020

làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

25 tháng 3 2021

hello l am Duong quang minh, nice to meet you, how old are you, l am nine how do you spell your name ,m-i-n-h 

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

26 tháng 8 2019

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM

17 tháng 12 2016

đề sai à n4-2n3+3n2-2n lm sao là SCP dc

18 tháng 12 2016

a) A=(n^2-n+1)^2-1=> A không thể chính phuong

=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương

b)

23^5 tận cùng 3

23^12 tận cùng 1

23^2003 tận cùng 7

=>B Tận cùng là 1 => B là số lẻ

23^5 chia 8 dư 7

23^12 chia 8 dư 1

23^2003 chia 8 dư 7

(7+1+7=15)

=> B chia 8 dư 7

Theo T/c số một số cp một số chính phương  lẻ chỉ có dạng 8k+1=> B không phải số Cp