tìm GTNN của Q= \(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
\(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)
\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)
Vậy min Q = -5/2 tại x = y = +-1
Còn cách đặt ẩn phụ thế này:
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)
Đặt x2y2 = t >= 0. Khi đó:
\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1
bạn vào câu hỏi tương tự xem bài của Ngô Thị Thu Trang nhé, Mr.Lazy giải rồi đó
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)
\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)
Dấu "=" xảy ra khi \(x^2=y^2=1\)
Vậy GTNN của A là -5/2.
gọi A là VT
Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)
\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)
\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)
Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)
\(Q\ge\sqrt{\frac{x^{10}y^{10}}{x^2y^2}}+\frac{1}{2}\sqrt{x^{16}y^{16}}-\left(x^2y^2+1\right)^2\)
\(Q\ge\frac{1}{2}\left(xy\right)^8+\left(xy\right)^4-\left(x^2y^2+1\right)^2\)
Đặt \(x^2y^2=a\ge0\Rightarrow Q\ge\frac{1}{2}a^4+a^2-\left(a+1\right)^2\)
\(Q\ge\frac{1}{2}a^4-2a-1=\frac{1}{2}a^4-2a+\frac{3}{2}-\frac{5}{2}\)
\(Q\ge\frac{1}{2}\left(a-1\right)^2\left(a^2+2a+3\right)-\frac{5}{2}\ge-\frac{5}{2}\)
\(Q_{min}=-\frac{5}{2}\) khi \(a=1\) hay \(x^2=y^2=1\)
\(A=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}+\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-x^4y^4-2x^2y^2-1\)
Áp dụng Côsi
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(\frac{1}{4}\left(x^{16}+y^{16}+1+1+1+1+1+1\right)\ge\frac{1}{4}.8\sqrt[8]{x^{16}y^{16}}=2x^2y^2\)
\(\Rightarrow A+\frac{6}{4}\ge x^4y^4+2x^2y^2-x^4y^4-2x^2y^2-1=-1\)
\(\Rightarrow A\ge-1-\frac{6}{4}=-\frac{5}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=y^2=1\)
Vậy GTNN của A là -2,5 khi x2 = y2 = 1