cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trren ti đối của tia CB láy điểm N sao cho BM =CN.
a) CMR: AMN là tam giác cân
b)kẻ BH vuông góc với AM (H thuộc AM) kẻ CK vuông góc với an (K thuộc AN). CM: BH=CK
c) CM: AH= AK
d) gọi O là giao điểm của BH và KC. OBC là tam giác gì?
e) khi góc A =60 độ, và BM=CN=BC.
Hãy tính số đo các góc của tam giác AMN và cho biết OBC là tam giác gì
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)