So sánh các phân số sau :
A=\(\frac{7^{58}+2}{^{7^{57}+2}}\) và B=\(\frac{7^{57}+1}{7^{56}+1^{ }}\)và C=\(\frac{7^{57}+2009}{7^{56}+2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt : }A=\frac{2009^{2008}+1}{2009^{2009}+1}\Rightarrow2009A=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(B=\frac{2009^{2007}+1}{2009^{2008}+1}\Rightarrow2009B=\frac{2009^{2008}+2009}{2009^{2008}+1}=1+\frac{2008}{2009^{2008}+1}\)
Ta thấy: \(\frac{2008}{2009^{2009}+1}<\frac{2008}{2009^{2008}+1}\)
=>2009A<2009B =>A<B
Hay \(\frac{2009^{2008}+1}{2009^{2009}+1}<\frac{2009^{2007}+1}{2009^{2008}+1}\)
Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :
\(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)
''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :
\(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)
Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)
Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)
Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)
Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)
ngoài ra a/b>1 thì a+m/b+m > 1 (m thuộc z, m khác 0) và a,b cậu biết rồi đó