K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2+y^2-2y=2\left(xy-1\right)\)

\(2x^2+y^2-2y=2xy-2\)

\(2x^2+y^2-2y-2xy+2=0\)

đc đến đây :v 

22 tháng 1 2016

Ta có:

3=1.3=(-1).(-3)=3.1=(-3).(-1)

Ta có bảng sau:

x+11-13-3
y+23-31-1
x0-22-4
y1-5-1-3

Vậy ta có các cặp (x;y) thỏa mãn là: (x;y)=(0;1);(-2;-5);(2;-1);(-4;-3)

22 tháng 1 2016

Đấy, kết quả giống của mình còn gì

1 tháng 1 2020

\(x^2+y^2-xy=x+y+2\)

\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y-4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=6\)

\(\left(x-y\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-1\right)^2\le6\forall x\)

\(\Rightarrow-\sqrt{6}\le x-1\le\sqrt{6}\)

\(\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)

Từ đó thay vào tìm các giá trị tương ứng của y.

anh đã quay trở lại r

21 tháng 10 2017

\(xy-x-y=2\)

\(\Rightarrow xy-x-y+1=3\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)

Tự xét được chứ :">

21 tháng 10 2017

thanks