1.Hình chữ nhật ABCD,BH vuông góc với AC,M và K là trung điểm AH,CD. Tính góc BMK
2.Hình thoi ABCD,một góc 60 độ. trên AD và CD lấy M,N. Tổng AM và CN là AD.P đối xứng N qua BC. chứng minh MP song song CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thoi , góc A = 60 độ suy ra ABD và BCD la 2 tam giác đều. =>
AB=BD và góc A = góc BDN = 6o độ.
Lại có AM+CN=AD=> AM=DN, CN=MD.
=> tam giác ABM = tam giác DBN. => BM =BN (1) và góc ABM = góc NBD.
=> góc ABM+ góc MBD = góc NBD + góc DBM = góc NBM = 60 độ.(2)
(1), (2) => đpcm.
a: Xét ΔBAM và ΔBCN có
BA=BC
góc BAM=góc BCN
AM=CN
Do đó: ΔBAM=ΔBCN
=>BM=BN
=>ΔBMN cân tại B
b: DM+MA=DA
DN+NC=DC
mà DA=DC và MA=NC
nên DM=DN
BM=BN
DM=DN
Do đó: BD là trung trực của MN
=>BD vuông góc MN
c: Xét ΔABD có AB=AD và góc A=60 độ
nên ΔABD đều
ΔABD đều có BM là trung tuyến
nên BM là phân giác của góc ABD(1)
Xét ΔCBD có CB=CD và góc C=60 độ
nên ΔCBD đều
ΔCBD đều có BN là trung tuyến
nên BN là phân giác của góc DBC(2)
Từ (1), (2) suy ra góc MBN=1/2(góc ABD+góc CBD)
=1/2*góc ABC
=60 độ
Xét ΔBMN có BM=BN và góc MBN=60 độ
nên ΔBMN đều
=>góc BMN=60 độ