cho tam giác ABC . Các phân giác của góc B , C cắt nhau tại I . Kẻ ID vuông góc vs AB ( D thuộc AB ) , IE vuông góc vs AC ( E thuộc AC ) . CMR : AD = AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IF vuông góc với BC \(\left(IF\in BC\right)\)
Xét tam giác IDB và tam giác IFB ta có :
\(\widehat{BDI}=\widehat{BFI}\left(=90^o\right)\)
\(BI\): cạnh chung
\(\widehat{IBD}=\widehat{IBF}\)( theo giả thiết )
\(\Rightarrow\Delta IDB=\Delta IFB\)( cạnh huyền - góc nhọn )
\(\Rightarrow ID=IE\)( hai cạnh tương ứng ) (1)
Tương tự : \(\Delta IEC=\Delta IFC\)( cạnh huyền - góc nhọn )
\(\Rightarrow IE=IF\)( hai cạnh tương ứng ) (2)
Từ (1) và (2) => ID = IE ( đpcm )
Xét tam giác CID và tam giác CIE có:
IC chung
góc ECT=góc DCI(do CI là tia phân giác góc C)
góc IEC=góc IDC=90 độ
=>tam giác CID=tam giác CIE
=>IE=ID (2 cạnh tương ứng)
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
Xét △ ABC có:
IB là tia phân giác \(\widehat{ABC}\)
IC là tia phân giác \(\widehat{ACB}\)
⇒ I là điểm đồng quy của 3 tia phân giác △ ABC
Suy ra: AI là phân giác \(\widehat{BAC}\)
Suy ra: I là tâm đường tròn nội tiếp △ ABC
R = d ( I, AB ) = d ( I, AC )
⇒ ID = IE
Xét △ ADI và △ AIE có
AI chung
\(\widehat{DAI}=\widehat{IAE}\)
ID = IE
⇒ △ADI = △AIE ( c - g - c )
⇒ AD = AE
Các tia phân giác góc B, C cắt nhau tại I
\(\Rightarrow\)AI là phân giác góc A
\(\Rightarrow\)\(\widehat{DAI}=\widehat{EAI}\)
Xét 2 tam giác vuông \(\Delta DAI\)và \(\Delta EAI\)có:
\(AI:\)cạnh chung
\(\widehat{DAI}=\widehat{EAI}\)(cmt)
suy ra: \(\Delta DAI=\Delta EAI\)(ch_gn)
\(\Rightarrow\)\(AD=AE\)