Giải hệ phương trình
\(\hept{\begin{cases}x^3-12x-y^3+6y^2-16=0\\4x^2+2\sqrt{4-x^2}-5\sqrt{4y-y^2}+6=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)
Vậy HPT có nghiệm.....
\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)