Cho tam giác ABC vuông tại A có AB = 6cm , BC = 10cm. Tính AC
(vẽ hình giúp mình với )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Áp dụng HTL: \(AH\cdot BC=AC\cdot AB\Leftrightarrow AH=\dfrac{8\cdot6}{10}=4,8\left(cm\right)\)
AC
Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)
AH
Đến đây đề thiếu dữ liệu
a/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)
\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
Bạn tự thay số tính nốt nhé vì số hơi lẻ
b/
Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)
Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC
Xét tg vuông ABI có
\(BI=\sqrt{AB^2+IA^2}\) (pitago)
Bạn tự thay số tính nhé
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
a) vì tam giác ABC vuông tại A, theo định lý Pytago, ta có:
BC^2= AB^2+AC^2 suy ra AC^2= BC^2-AB^2= 10^2-6^2= 64
vậy BC=8 cm
b) Chứng minh gì vậy bạn
anh ngại vẽ hình hình thì quá đơn giản rồi em tự vẽ lấy :)
Tam giác ABC vuông tại A áp dụng định lý PITAGO ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(AC^2=BC^2-AB^2\)
\(=10^2-6^2=64\left(cm\right)\)
\(\Rightarrow\)\(AC=8\left(cm\right)\)
Vậy AC = 8 ( cm )
Ta có hình vẽ:
Áp dụng định lý PITAGO . Ta có:
BC2 = AB2 + AC2
Vậy AC2 = BC2 - AB2
AC2 = 102 - 62 = 64 cm
64 = (8) . (8)
Suy ra AC = 8 cm