K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(A=5^{n+2}+26.5^n+8^{2n+1}\left(n\in N\right)\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8\left(64-5\right)\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59.5^n+8.59\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59\left[5^n+8\left(64^{n-1}+64^{n-2}.5+...\right)\right]⋮59\)

Vậy \(A⋮59\)\(\forall n\in N\)(đpcm)

25 tháng 9 2021

\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)

Ta có \(64:59R5\Rightarrow64^n:59R5\)

Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)

Vậy \(A⋮59\)

(\(R\) là dư)

\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

 

cho hỏi là x=-2 thì x đâu còn \(\ge\) 0 nữa

28 tháng 6 2021

a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)

\(=5^n.51+8.64^n\)

Có \(64\equiv5\) (mod 59)

\(\Rightarrow64^n\equiv5^n\) (mod 59)

\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)

mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59) 

\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)

b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)

Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)

Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)

\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)

\(\Rightarrow16^n-9^n-7⋮3\) (II)

Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8) 

\(\Rightarrow9^n+7⋮8\)  mà \(16^n=2^n.8^n⋮8\) 

\(\Rightarrow16^n-9^n-7⋮8\) (III)

Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)

Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\) 

\(\Rightarrow\) Đpcm

28 tháng 6 2021

a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n

=5n.51+8.64n=5n.51+8.64n

Có 64≡564≡5 (mod 59)

⇒64n≡5n⇒64n≡5n (mod 59)

⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)

mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59) 

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

15 tháng 12 2019

là số nguyên âm hay nguyên dương hả bạn

15 tháng 12 2019

số nguyên dương bạn nhé

15 tháng 12 2019

Bài giải

Theo đề bài, ta có: \(\frac{n^2+5n+15}{25}\)với n \(\in\)N

\(\frac{n^2+5n+15}{25}\)

\(\frac{n^2}{25}+\frac{5n}{25}+\frac{15}{25}\)

Vì 15 không chia hết cho 25

Nên \(\frac{n^2+5n+15}{25}\notin Z\)

\(\RightarrowĐPCM\)

15 tháng 12 2019

Mình làm rồi mà. Bạn đã gửi quá nhiều câu hỏi giống nhau