K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(A=n\left(2n+7\right)\left(7n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)\)

\(=14n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)

Ta có :

\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Leftrightarrow A⋮6\rightarrowđpcm\)

17 tháng 7 2017

A = n(2n+7) ( 7n+7)

= 7n ( n+1) (2n+4+3)

= 14n (n+1) 2(n+2) + 3.7(n+1)n

Ta có : n(n+1) (n+2) là tích của 3 số tự nhiên liên tiếp

=> n (n+1) (n+2) chia hết cho 6

=> A chia hết cho 6 (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

22 tháng 10 2021

a: Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

5 tháng 2 2022

có vẻ hơi ngắn

 

18 tháng 7 2017

\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)

\(=\left(n^3+n\right)\left(n^2+4\right)\)

\(=n^5+4n+5n^3\)

\(=n^5-n+5n+5n^3\)

Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

30 tháng 1 2017

Nguyễn Huy TúAkai Haruma

1 tháng 7 2017

giups mik ik

29 tháng 1 2019

\(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2+1\right)\left(n^2-1\right)+5n\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\) chia hết cho 5

29 tháng 1 2019

Bạn có thể giải cụ thể hơn dc ko?