Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7A-2B
\(=7\cdot\left(5x+2y\right)-2\left(9x+7y\right)\)
\(=35x+14y-18x-14y=17x\)
b: \(7\left(5x+2y\right)+2\left(9x+7y\right)=17y⋮17\)
mà \(5x+2y⋮17\)
nên \(2\left(9x+7y\right)⋮17\)
=>\(9x+7y⋮17\)
a, 7( 5x+ 2y ) - 2( 9x + 7y )
= 35x+ 14y - 18x - 14y
= 35x - 18x
= 17x
b, Ko bt lm ạ
câu a có người trả lời rồi nên mik ko làm nữa!
b) Ta có: 9x+7y = 34x - 25x+17y-10y
=34x+17y+(-25x-10x)
=34x+17y-5(5x+2y)
vì 34 chia hết cho 17
17 chia hết cho 17
(5x+2y) chia hết cho 17
nên nếu x, y thuộc Z thoã mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17.
Cảm ơn đã theo dõi mik
a) 7A-2B= 7.(5x+2y)-2(9x+7y)
=35x+14y-18x-14y
=17x
b) ta có : 7A-2B=17x ( câu a)
mà 7A=7.(5x+2y) chia hết cho 17 (5x+2y chia hết cho 17)
=> 2B = 2(9x+7y) chia hết cho 17
mà 2 không chia hết cho 17 nên 9x+7y chia hết cho 17 ( đpcm)
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
a, \(7A-2B=7.\left(5x+2y\right)-2.\left(9x+7y\right)\)
\(=35x+14y-18x+14y=17x\)
Vậy 7A-2B=17x
b, Ta có: \(5x+2y⋮17\Rightarrow5.\left(5x+2y\right)⋮17\Rightarrow25x+10y⋮17\) (1)
Mà \(\left(2x+10y\right)+\left(9x+7y\right)=25x+10y+9x+7y\)
\(=34x+17y=17.\left(2x+y\right)⋮17\) (2)
Từ (1) và (2) \(\Rightarrow9x+7y⋮17\) => đpcm
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
Bài 1:
Ta có:
\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)
\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )
\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)
Do đó ta có đpcm.
Bài 2:
Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.
Ta có: \(5a+2b\vdots 17\)
\(\Leftrightarrow 2(5a+2b)\vdots 17\)
\(\Leftrightarrow 10a+4b\vdots 17\)
\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)
\(\Leftrightarrow 27a+21b\vdots 17\)
\(\Leftrightarrow 3(9a+7b)\vdots 17\)
\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)
Ta có đpcm.