Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có :
\(a+b+c=0< =>\left(a+b+c\right)^2=0< =>a^2+b^2+c^2+2ab+2ac+2bc=0\)
Mà \(a^2+b^2+c^2=1\) < = > 1 + 2 ( ab + ac + bc ) = 0
< = > 2 ( ab + ac + bc ) = -1
< = > ab + ac + bc = -1/2
\(< =>\left(ab+ac+bc\right)^2=\left(-\dfrac{1}{2}\right)^2< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)
\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=\dfrac{1}{4}\)
Lại có từ \(a^2+b^2+c^2=1\)
\(< =>\left(a^2+b^2+c^2\right)^2=1< =>a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]=1\)
\(< =>a^4+b^4+c^4+2.\dfrac{1}{4}=1< =>a^4+b^4+c^4+\dfrac{1}{2}=1< =>a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\left(đpcm\right)\)
a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) (1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
a + b + c = 0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\left(1\right)\)
Cần phải chứng minh
2.(a4 + b4 + c4)=(a2+b2+c2)
\(\Leftrightarrow\) 2.(a4 - b4+c4)=a4+b4+c4+2.(a2b2+b2c2+c2a2)
\(\Leftrightarrow\)a4 +b4+c4=2.(a2b2+b2c2+c2a2)
\(\Leftrightarrow\) (a2 + b2 +c2 ) = 4(a2b2+b2c2 +c2a2)
\(\Leftrightarrow\) [ -2.(ab+bc+ca)2 ] = 4(a2b2+b2c2 +c2a2)
\(\Leftrightarrow\) 4(a2b2+b2c2 +c2a2)+8.(ab2c +bc2a+a2bc)=4.(a2b+b2c2+c2+a2
\(\Leftrightarrow\) 8(ab2c+bc2a+a2bc)=0
\(\Leftrightarrow\)8abc.(a+b+c)=0
\(\Leftrightarrow\) 0 =0 (đúng ) Vì a +b +c =0
=> ĐPCM
Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)
Mà \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow2ab+2ac+2bc=0\)
\(\Rightarrow2\left(ab+ac+bc\right)=0\)
\(\Rightarrow ab+ac+bc=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)