K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(S_{99}=\dfrac{99\cdot\left[2\cdot6+98\cdot\left(-2\right)\right]}{2}=99\cdot\left(6-98\right)\)

=-9108

2: \(S_{100}=\dfrac{100\cdot\left(2\cdot\left(-2\right)+99\cdot4\right)}{2}=50\left(-4+99\cdot4\right)\)

=50*392

=19600

16 tháng 9 2023

\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)

16 tháng 9 2023

Bài 4:

\(d=u_2=u_1=5-2=3\)

Bài 5:

\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)

Vậy: 2018 là số hạng thứ 225 của dãy

Bài 6:

Đề chưa có yêu cầu

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,u_1+u_n=u_1+\left[u_1+\left(n-1\right)d\right]=u_1+u_1+\left(n-1\right)d=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=\left[u_1+d\right]+\left[u_1+\left(n-2\right)d\right]=2u_1+\left(n-1\right)d\\ ...\\ u_k+u_{n-k+1}=\left[u_1+\left(k-1\right)d\right]+\left[u_1+\left(n-k+1-1\right)d\right]=2u_1+\left(n-1\right)d\)

\(b,u_1+u_n=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=2u_1+\left(n-1\right)d\\ ...\\ u_n+u_1=2u_1+\left(n-1\right)d\)

Cộng vế với vế, ta được:

\(2\left(u_1+u_2+...+u_n\right)=n\left[2u_1+\left(n-1\right)d\right]\\ \Leftrightarrow2\left(u_1+u_2+...+u_n\right)=n\left(u_1+u_n\right)\)

1:

\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)

2:

\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)

\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)

\(=3^{13}-3\)

24 tháng 11 2023

Câu 1:

\(S_8=u_1+u_2+u_3+...+u_8\)

\(=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=\dfrac{325089}{8}\)

2: \(S_{10}=u_1+u_2+...+u_9+u_{10}\)

=>\(S_{10}=\dfrac{u_1\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\left(\dfrac{1}{2}\right)^{10}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\left(1-\dfrac{1}{2^{10}}\right)=-6+\dfrac{6}{2^{10}}=-\dfrac{3069}{512}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\left. \begin{array}{l}{u_1} + {u_n} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\\{u_2} + {u_{n - 1}} = {u_1} + d + \left( {n - 2} \right)d = {u_1} + \left( {n - 1} \right)d\\{u_n} + {u_1} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\end{array} \right\} \Rightarrow {u_1} + {u_n} = {u_2} + {u_{n - 1}} = ... = {u_n} + {u_1}\)

b)    Dựa vào công thức vừa chứng minh ta có: \(n\left( {{u_1} + {u_n}} \right)\) = \(2{S_n}\)

27 tháng 11 2023

Công sai của cấp số cộng đó là:

\(u_3-u_1=u_1+2d-u_1=2d=2\cdot3=6\)

22 tháng 9 2023

Ta có:

\(u_2=u_1.q\\ u_3=u_2.q=\left(u_1.q\right).q=u_1.q^2\\ u_4=u_3.q=\left(u_1.q^2\right).q=u_1.q^3.\\ .\\ .\\ .\\ u_{10}=u_1.q^9\)