K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

\(X\text{ét}\Delta BDM\)có \(\widehat{BMD}+\widehat{BDM}+\widehat{DMB=180}\)

\(\Leftrightarrow\widehat{BMD}+90+60=180\)

\(\Rightarrow\widehat{BMD}=30\)

Tương tự vs tg EMC có  EMC=30

\(X\text{ét}\widehat{DME}=180-\left(\widehat{BMD}+\widehat{EMC}\right)=180-30-30=120\)

25 tháng 3 2017

lại bài này nữa à

17 tháng 3 2018

a)  \(\Delta ABC\)đều    \(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=60^0\)

Áp định lý tổng 3 góc của một tam giác vào tam giác vuông DBM và ECM ta có:

\(\widehat{DBM}+\widehat{DMB}=90^0\)\(\Rightarrow\)\(\widehat{DMB}=90^0-\widehat{DBM}=30^0\)

\(\widehat{ECM}+\widehat{EMC}=90^0\)\(\Rightarrow\)\(\widehat{EMC}=90^0-\widehat{ECM}=30^0\)

Ta có:

       \(\widehat{DMB}+\widehat{DME}+\widehat{EMC}=180^0\)

\(\Rightarrow\)\(\widehat{DME}=180^0-\widehat{DMB}-\widehat{EMC}=120^0\)

a: Xét ΔABC có AB<AC

mà BH là hình chiếu của AB trên BC

và CH là hình chiếu của AC trên BC

nên HB<HC

Ta có:AB<AC

nên \(\widehat{B}>\widehat{C}\)

hay \(\widehat{BAH}< \widehat{CAH}\)

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

hay ΔBDA cân tại B

a)

Ta có: ΔABC cân tại A(gt)

mà AM là đường phân giác ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(cmt)

BK là đường cao ứng với cạnh AC(Gt)

AM cắt BK tại I(Gt)

Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)

Suy ra: CI\(\perp\)AB(Đpcm)

NA
Ngoc Anh Thai
Giáo viên
4 tháng 4 2021

undefined

a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB

b) Tam giác BDH = tam giác DBP (ch.gn)

Do đó BH = DP

BDKQ là hình chữ nhật => DP = HK

=> BK = BH + HK = DP + DQ (đpcm)