Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)
=> Tứ giác MIKQ là hình bình hành
Ta lại cs : MI = MQ
=> Tứ giác MIKQ là hình thoi
a) Ta có: \(MI=IN=\dfrac{MN}{2}\)(I là trung điểm của MN)
\(QK=KP=\dfrac{QP}{2}\)(K là trung điểm của QP)
mà MN=QP(Hai cạnh đối trong hình bình hành MNPQ)
nên MI=IN=QK=KP
Ta có: \(MN=2\cdot MQ\)(gt)
mà \(MN=2\cdot MI\)(I là trung điểm của MN)
nên MQ=MI
Xét tứ giác MIKQ có
MI//QK(MN//QP,I\(\in\)MN, \(K\in QP\))
MI=QK(cmt)
Do đó: MIKQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MIKQ có MI=MQ(cmt)
nên MIKQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: \(\widehat{QMN}+\widehat{AMN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{AMN}=180^0-\widehat{QMN}=180^0-120^0\)
hay \(\widehat{AMI}=60^0\)
Ta có: MI=MQ(cmt)
mà AM=MQ(M là trung điểm của AQ)
nên AM=MI
Xét ΔMAI có AM=MI(cmt)
nên ΔMAI cân tại M(Định nghĩa tam giác cân)
Xét ΔMAI cân tại M có \(\widehat{AMI}=60^0\)(cmt)
nên ΔMAI đều(Dấu hiệu nhận biết tam giác đều)
c) Ta có: AI=AM(ΔAMI đều)
mà \(AM=MQ\)(M là trung điểm của AQ)
nên AI=MQ
mà \(MQ=\dfrac{MN}{2}\)(gt)
nên \(AI=\dfrac{MN}{2}\)
Xét ΔAMN có
AI là đường trung tuyến ứng với cạnh MN(I là trung điểm của MN)
\(AI=\dfrac{MN}{2}\)(cmt)
Do đó: ΔAMN vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{NAM}=90^0\)
Ta có: AM=MQ(M là trung điểm của AQ)
mà MQ=NP(Hai cạnh đối trong hình bình hành MNPQ)
nên AM=NP
Xét tứ giác AMPN có
AM//NP(MQ//NP, A\(\in\)MQ)
AM=NP(cmt)
Do đó: AMPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMPN có \(\widehat{NAM}=90^0\)(cmt)
nên AMPN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hình bình hành
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và ED=BC/2(1)
Xét ΔGBC có
M là trung điểm của BG
N là trung điểm của CG
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và MN=BC/2(2)
Từ (1) và (2) suy ra MN//DE và MN=DE
hay MNDE là hình bình hành
Bài 2:
a: Xét tứ giác MIKQ có
MI//QK
MI=QK
Do đó: MIKQ là hình bình hành
mà MI=MQ
nên MIKQ là hình thoi