Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(|2\overrightarrow{AM}+\frac{1}{2}\overrightarrow{DC}|=|\overrightarrow{AD}+\overrightarrow{DN}|=|\overrightarrow{AN}|=AN\)
Áp dụng định lý Pitago cho tam giác $ADN$ vuông tại $D$ ta có:
\(AN=\sqrt{AD^2+DN^2}=\sqrt{(2a)^2+(\frac{3a}{2})^2}=\frac{5}{2}a\)
Đáp án A
Gọi M là trung điểm BC
+) vecto AI=vecto IG=vecto GM
+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA
+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA
+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB
=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA
+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM
=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB
b/
+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)
+) vecto CK=6(4/30vecto CA+1/30vecto CB)
do đó 1/5vecto CI=1/6vecto CK
Nên C,I,K thẳng hàng.
\(\overrightarrow{DC}.\overrightarrow{MN}=\overrightarrow{DC}.\left(\overrightarrow{BN}-\overrightarrow{BM}\right)\)
\(=\overrightarrow{DC}.\overrightarrow{BN}-\overrightarrow{DC}.\overrightarrow{BM}\)
\(=-\overrightarrow{DC}.\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{DC}.\dfrac{3}{4}\overrightarrow{BC}\)
\(=-\dfrac{1}{2}AB^2-\dfrac{3}{4}DC.BC.cos90^o\)
\(=-\dfrac{1}{2}.2^2=-2\Rightarrow A\)