Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006
Ta thấy 2006!+2 chia hết cho 2
2006!+3 chia hết cho 3
2006!+4 chia hết cho 4
.....................................
2006!+2006 chia hết cho 2006
Vậy cả 2005 số trên đều là hợp số
-> điều phải chứng minh
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Câu này có trong câu hỏi tương tự bạn chịu khó tìm bạn nhé :))
Đặt
X
=
a
+
1
b
+
b
+
1
a
=
a
2
+
b
2
+
a
+
b
a
b
Vì X là số tự nhiên =>
a
2
+
b
2
+
a
+
b
⋮
a
b
Vì d=UCLN(a,b) =>
a
⋮
d
và
b
⋮
d
=>
a
b
⋮
d
2
=>
a
2
+
b
2
+
a
+
b
⋮
d
2
Lại vì
a
⋮
d
và
b
⋮
d
=>
a
2
⋮
d
2
và
b
2
⋮
d
2
=>
a
2
+
b
2
⋮
d
2
=>
a
+
b
⋮
d
2
=>
a
+
b
≥
d
2
(đpcm)
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}
a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)