Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a) xét tứ giác AKCM ta có:
IA=IC
IK=IM
=> tứ giác AKCM là hình bình hành ( hai đg chéo cắt nhau tại trg điểm mỗi đg)
mà góc M bằng 90 ( AM là đg phân giác)
=> tứ giác AKCM là hình chữ nhật
b)ta có AK//MC ; AK=MC (cmt)
mà MC=MB
=> AK//BM ; AK=BM
=> tứ giác AKBM là hình bình hành
c)
AKCM là hình vuông
=>AM=MC
BM=MC=1/2BC
=>AM=1/2BC
=> tam giác ABC vuông cân tại A
BẠN TỰ VẼ HÌNH NHÉ
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó:AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
hay ΔABC vuông tại A
a ) Xét tam giác ABC ta có
AM = MB ( gt )
AN = NC ( gt )
suy ra MN là đường trung bình của tam giác ABC
b ) tứ giác BCKM là hình bình hành
Vì MK = 2 MN ( gt)
BC = 2 MN
suy ra MK = MN
mà MK // MN
nên tứ giác BCKM là hình bình hành
c ) Xét tam giác NMC và tam giác NKA , có
góc MNC = góc KNA ( đối đinh )
NM = NK
NA=NC
suy ra tam giác NMC = tam giác NKA ( c.g.c)
suy ra góc CMN = góc AKN ( 2 góc tương ứng )
mà 2 góc nằm ở vị trí so le trong nên AK // MC
mà AK = MC ( 2 cạnh tương ứng )
suy ra tứ giác AKCM là hình bình hành
d) tam giác ABC là tam giác đều thì tứ giác AKCM là hình chữ nhật
a) Xét tứ giác AMCK:
I là trung điểm của AC (gt).
I là trung điểm của MK (K là điểm đối xứng với M qua I).
Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)
=> Tứ giác AMCK là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AM là đường cao (gt).
=> AM là trung tuyến (Tính chất tam giác cân).
=> M là trung điểm của BC.
=> BM = MC.
Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).
BM = MC (cmt).
=> AK = MC = BM.
Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).
=> AK // BM.
Xét tứ giác AKMB:
AK // BM (cmt).
AK /= BM (cmt).
=> Tứ giác AKMB là hình bình hành (dhnb).
c) Tứ giác AMCK là hình vuông (gt).
=> AK = AM (Tính chất hình vuông).
Mà AK = BM (cmt).
=> AM = BM = AK.
Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).
=> AM = BM = AK = \(\dfrac{1}{2}\) BC.
Xét tam giác ABC cân tại A:
AM = \(\dfrac{1}{2}\) BC (cmt).
=> Tam giác ABC vuông cân tại A.