K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

b: ΔABD=ΔAED

=>góc AED=góc ABD=90 độ

c: Xét ΔAEF vuông tại A và ΔABC vuông tại B có

AE=AB

góc EAF chung

=>ΔAEF=ΔABC

=>AF=AC

d: DB=DE

mà DE<DC

nên DB<DC

15 tháng 8 2019

b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:

∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)

∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)

Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)

 

Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)

18 tháng 1 2018

Tự vẽ hình nha

Xét \(\Delta ADBvà\Delta AED\)

AE=AB(giả thiết)

\(\widehat{BAD}=\widehat{EAD}\)(Giả thiết)

Cạnh AD chung

\(\Rightarrow\Delta ADB=\Delta AED\left(c-g-c\right)\)

13 tháng 3 2023

a) Xét ∆ADE và ∆ADB ta có:

AE = AB (gt)

���^=���^ (AD là tia phân giác của ���^)

AD (cạnh chung)

 

Do đó ∆ADE = ∆ADB (c.g.c) ⇒���^=���^

Mà ���^ là góc ngoài của tam giác ADE

Nên ���^>���^⇒���^>���^.

b) Ta có ���^>���^(���^ là góc ngoài của tam giác ACD)

Mà ���^>���^ (câu a) ⇒���^>���^

∆CDE có ���^>���^⇒ DC > ED (định lí cạnh đối diện với góc lớn hơn)

Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.