Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$
$=\overrightarrow{AB}-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$
Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$
Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)
Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).
giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC (các b vẽ hình ra hộ t nhé)
a, \(\Delta BKCcó\left\{{}\begin{matrix}BM=MC\\BG=GK\end{matrix}\right.\)
=> GM là đường trung bình của \(\Delta BKC\)
=> \(GM=\frac{1}{2}KC\)
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=6\overrightarrow{GM}=3\overrightarrow{KC}\)
b, \(\overrightarrow{AB}+3\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DB}+3\overrightarrow{AD}+3\overrightarrow{DC}\)
\(=4\overrightarrow{AD}+\left(-3\overrightarrow{DC}\right)+3\overrightarrow{DC}\)
\(=4\overrightarrow{AD}\)
\(\overrightarrow{GE}=\dfrac{1}{3}\overrightarrow{AG}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)
\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)
=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
Bài 2:
vecto AM=vecto AB+vecto BM
=vecto AB+2/3vecto BC
=vecto AB+2/3*(vecto BA+vecto AC)
=1/3*vecto AB+2/3*vecto AC