K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.

4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;

b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.

1

Bài 1: 

Xét tứ giác AHCD có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

25 tháng 9 2018

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

14 tháng 10 2019

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình hành.b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hìnhgì?Bài 9: Cho tam giác ABC, trung tuyến AM....
Đọc tiếp

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.

11
3 tháng 3 2020

Bài 12:

:v Mình sửa P là trung điểm của EG

A B C D E O Q N F G M I 1 2 P

a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)

Xét tam giác EAC và tam giác BAG có:

\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)

\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )

+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG 

Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)

Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )

Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)

Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)

\(\Rightarrow\widehat{IOC}=90^0\)

\(\Rightarrow BG\perp EC\)

b) Vì ABDE là hình vuông (gt)

\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)

Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)

\(\Rightarrow QM\)là đường trung bình của tam giác EBC

\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)

CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)

Mà EC=BG (cm câu a )

\(\Rightarrow QM=MN=NP=PQ\)

Xét tứ giác MNPQ  có \(QM=MN=NP=PQ\left(cmt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)

CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )

Mà \(BG\perp EC\left(cmt\right)\)

\(\Rightarrow MN\perp MQ\)

\(\Rightarrow\widehat{QMN}=90^0\)(2)

Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb ) 

\(\)

4 tháng 3 2020

Bài 11:

A B C H D P E Q

a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{DAE}=180^0\)

\(\Rightarrow D,A,E\)thẳng hàng

b) Vì AHBD là hình chữ nhật (gt)

\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)

Mà P là trung điểm của AB (gt)

\(\Rightarrow P\)là trung điểm của DH  (1)

\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)

\(\Rightarrow PH=PA\)

\(\Rightarrow P\in\)đường trung trục của AH

CMTT Q thuộc đường trung trực của AH

\(\Rightarrow PQ\)là đường trung trực của AH

c)  Từ (1) => P thuộc DH

=> D,P,H thẳng hàng

d) Vì ABCD là hình chữ nhật (gt)

=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ

=> góc DHA= 45 độ

CMTT AHE =45 độ

=> góc DHA+ góc AHE=90 độ

Hay góc DHE=90 độ

=> DH vuông góc với HE

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8


Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K