Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=a$
$\Rightarrow x=2a+1; y=4a-3; z=6a+5$
Thay vào điều kiện $5z-3x-4y=50$ thì:
$5(6a+5)-3(2a+1)-4(4a-3)=50$
$\Rightarrow 8a-16=0$
$\Rightarrow a=2$
Do đó:
$x=2a+1=2.2+1=5$
$y=4a-3=4.2-3=5$
$z=6a+5=6.2+5=17$
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
+)
+)
+)
Vậy bộ số l
à
Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}=\frac{-3x-4y+5z+3-12-25}{8}=2\)
\(\Rightarrow-3x+3=-12\Leftrightarrow-3x=-15\Leftrightarrow x=5\)
\(\Rightarrow-4y-12=-32\Leftrightarrow-4y=-20\Leftrightarrow y=5\)
\(\Rightarrow5z-25=60\Leftrightarrow z=17\)
Bạn vô tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
http://olm.vn/hoi-dap/question/224185.html
Bạn vào đây tham khảo nha !!!
Ta có: x-1/2 = y+3/4 = z-5/6 = K
x = 2K+1 ; y = 4K+3 ; z = 6K+5
Thay các giá trị: x = 2K+1 ; y = 4K-3 ; z = 6K+5 vào biểu thức
5z - 3x - 4y = 50. Ta có,
5.(6K+5) - 3.(4K+3) - 4.(4K-3) = 50
<=> 30K + 25 - 6K - 3 - 16K + 12 = 50
<=> 8K + 34 = 50
<=> 8K = 50-34 = 16
<=> K = 16/8 = 2
=> x-1/2 = 2 => x-1 = 2.2 <=> x-1=4 => x=4+1=5
=>y-3/4 = 2 => y+3 = 2.4 <=> y+3 = 8 => y = 8-3=5
=> z-5/6 = 2 => z-5 = 2.6 <=> z-5 = 12 => z = 12+5=17