K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1/ Ta cần c/m: \(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

Tức là \(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Ta có đpcm.

20 tháng 5 2019

\(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow\)\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\le\frac{49}{16}\)

\(\Leftrightarrow\)\(\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\right]^2\le\frac{49}{16}\)

\(\Leftrightarrow\)\(\frac{-7}{4}\le2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\le\frac{7}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{4}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)

Có : \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\le\frac{1}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=3\)

... 

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

16 tháng 1 2022

a) (x + y + z)2 \(\le3\left(x^2+y^2+z^2\right)\)(1) 

<=> \(x^2+y^2+z^2+2xy+2yz+2zx\le3x^2+3y^2+3z^2\)

<=> \(2x^2+2y^2+2z^2-2xy-2xz-2yz\ge0\)

<=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge0\) (đúng) 

=> (1) đúng "=" khi x = y = z

 

16 tháng 1 2022

b) \(A=1\sqrt{4a+1}+1.\sqrt{4b+1}+1.\sqrt{4c+1}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(4a+1+4b+1+4c+1\right)}\)

\(=\sqrt{3.\left[4\left(a+b+c\right)+3\right]}=\sqrt{21}\left(\text{vì }a+b+c=1\right)\)

"=" xảy ra <=> \(\dfrac{1}{\sqrt{4a+1}}=\dfrac{1}{\sqrt{4b+1}}=\dfrac{1}{\sqrt{4c+1}};a+b+c=1\)

<=> a = b = c = 1/3 

NV
17 tháng 12 2020

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)