K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Đặt :

\(H=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-..........-\dfrac{1}{1024}\)

\(\Leftrightarrow H=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+...........+\dfrac{1}{1024}\right)\)

Đặt :

\(T=\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{1024}\)

\(\Leftrightarrow T=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\)

\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow T=1-\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-1-\left(1-\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow H=-1-1+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-2+\dfrac{1}{2^{10}}\)

6 tháng 9 2017

Đặt \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)

\(A=-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

Đặt \(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)

\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)

\(2B-B=1-\dfrac{1}{1024}\)

\(\Rightarrow B=\dfrac{1023}{1024}\)

\(\Rightarrow A=-\dfrac{1023}{1024}\)

31 tháng 12 2023

\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)

\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)

\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)

\(\Rightarrow3x=1023\)

\(\Rightarrow x=341\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2023

Lời giải:

$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$

$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$

$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$

$\frac{3x}{1024}=\frac{1023}{1024}$

$\Rightarrow 3x=1023$

$\Rightarrow x=341$

7 tháng 6 2017

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\) có:

\(2A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)

\(\Rightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{1}{2}-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{1024}=\dfrac{1}{1024}\)

Vậy...

7 tháng 6 2017

Cách của Tuấn Anh Phan Nguyễn đây.

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\right]\)

\(=\dfrac{1}{2}-\left[\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{16}\right)+...+\left(\dfrac{1}{512}-\dfrac{1}{1024}\right)\right]\)\(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)=\dfrac{1}{1024}.\)

\(\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot5-\left(\dfrac{1}{4}\right)^5\cdot3}{\dfrac{1}{1024}\cdot\dfrac{1}{3}-\left(\dfrac{1}{2}\right)^{11}}\)

\(=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot2}{\left(\dfrac{1}{2}\right)^{10}\cdot\left(\dfrac{1}{3}-\dfrac{1}{2}\right)}\)

\(=2:\dfrac{-1}{6}=2\cdot\left(-6\right)=-12\)

15 tháng 10 2018

cảm ơn bạn rất nhiều

31 tháng 1 2019

\(B=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot5-\left(\dfrac{1}{2}\right)^{10}\cdot3}{\left(\dfrac{1}{2}\right)^{10}\cdot\dfrac{1}{3}-\left(\dfrac{1}{2}\right)^{11}}\\ =\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot\left(5-3\right)}{\left(\dfrac{1}{2}\right)^{10}\cdot\left(\dfrac{1}{3}-\dfrac{1}{2}\right)}\\ =\dfrac{2}{-\dfrac{1}{6}}\\ =-12\)

31 tháng 1 2019

\(B=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot5-\left(\dfrac{1}{2}\right)^{10}\cdot3}{\left(\dfrac{1}{2}\right)^{10}\cdot\dfrac{1}{3}-\left(\dfrac{1}{2}\right)^{11}}\\ B=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot\left(5-3\right)}{\left(\dfrac{1}{2}\right)^{10}\cdot\left(\dfrac{1}{3}-\dfrac{1}{2}\right)}\\ B=\dfrac{2}{-\dfrac{1}{6}}\\ B=-12\)

 

Đặt \(B=1+\dfrac{1}{2}+...+\dfrac{1}{1024}\) và \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-...-\dfrac{1}{1024}\)

=>A=-B

\(B=1+\dfrac{1}{2}+...+\dfrac{1}{1024}\)

=>\(\dfrac{1}{2}B=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{11}}\)

=>\(-\dfrac{1}{2}B=\dfrac{1}{2^{11}}-1\)

=>\(\dfrac{1}{2}B=1-\dfrac{1}{2^{11}}=\dfrac{2^{11}-1}{2^{11}}\)

=>\(B=\dfrac{2^{11}-1}{2^{10}}\)

=>\(A=\dfrac{1-2^{11}}{2^{10}}\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2018

Lời giải:

a)

\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)

b)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)

\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)

11 tháng 7 2023

\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\)  - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)

\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)

\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\) 

\(\dfrac{3}{16}\)  - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)

 ( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\) 

    \(\dfrac{41}{16}\)              - \(x\)    = \(\dfrac{5}{2}\)

                         \(x\)    = \(\dfrac{41}{16}\)  - \(\dfrac{5}{2}\)

                         \(x\)     = \(\dfrac{1}{16}\)

11 tháng 7 2023

2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\)

    \(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)

   - \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)\(\dfrac{1}{5}\)\(\dfrac{1}{15}\)) - \(x\)

    - \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)

       \(x\)   = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)

       \(x\)    = \(\dfrac{5}{6}\)

3 tháng 10 2018

\(=\dfrac{1}{8}\)

3 tháng 10 2018

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}\)

\(\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}-\dfrac{1}{6}\right)+\left(\dfrac{-1}{7}+\dfrac{1}{7}\right)+\dfrac{1}{8}\)

=0+0+0+0+0+0+\(\dfrac{1}{8}\)

=\(\dfrac{1}{8}\)