Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}-\left|x-2,4\right|=\dfrac{1}{2}\)
\(\left|x-2,4\right|=\dfrac{2}{3}-\dfrac{1}{2}\)
\(\left|x-2,4\right|=\dfrac{1}{6}\)
*) Với \(x\ge2,4\) ta có:
\(x-2,4=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+2,4\)
\(x=\dfrac{77}{30}\) (nhận)
*) Với \(x< 2,4\) ta có:
\(x-2,4=-\dfrac{1}{6}\)
\(x=-\dfrac{1}{6}+2,4\)
\(x=\dfrac{67}{30}\) (nhận)
Vậy \(x=\dfrac{67}{30};x=\dfrac{77}{30}\)
a, \(\dfrac{3}{7}\)\(x\) - 0,4 = - \(\dfrac{17}{35}\)
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{17}{35}\) + 0,4
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{3}{35}\)
\(x\) = - \(\dfrac{3}{35}\): \(\dfrac{3}{7}\)
\(x\) = - \(\dfrac{1}{5}\)
b, 0,2.(\(x\) - 3) +2,4 = 10
0,2.(\(x\) - 3) = 10 - 2,4
0,2.(\(x\) - 3) = 7,6
\(x\) - 3 = 7,6:0,2
\(x\) - 3 = 38
\(x\) = 38 + 3
\(x\) = 41
a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)
Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)
=>\(4⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=>\(x\in\left\{16;4;25;1;49\right\}\)
b:
a) \(\left|x-1\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
b) \(\left|x-0,5\right|=2,4\)
\(\Rightarrow\orbr{\begin{cases}x-0,5=2,4\\x-0,5=-2,4\end{cases}}\Rightarrow\orbr{\begin{cases}x=2,9\\x=-1,9\end{cases}}\)
c) \(2\left|3x-1\right|-1=6\)
\(\Leftrightarrow2\left|3x-1\right|=7\)
\(\Leftrightarrow\left|3x-1\right|=3,5\)
\(\Rightarrow\orbr{\begin{cases}3x-1=3,5\\3x-1=-3,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=4,5\\2x=-2,5\end{cases}\Rightarrow\orbr{\begin{cases}x=1,5\\-1,25\end{cases}}}\)
\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}=\dfrac{7}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}+\dfrac{7}{2}x=-\dfrac{1}{3}\\ \Rightarrow\left(\dfrac{1}{2}+\dfrac{7}{2}\right)x+\dfrac{5}{2}=-\dfrac{1}{3}\\ \Rightarrow4x=-\dfrac{17}{6}\\ \Rightarrow x=-\dfrac{17}{24}.\)
\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{1}{2}x-3\dfrac{1}{2}x=-\dfrac{1}{3}-2\dfrac{1}{2}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{7}{2}\right)x=-\dfrac{1}{3}-\dfrac{5}{2}\\ \Rightarrow\dfrac{-6}{2}x=-\dfrac{17}{6}\\ \Rightarrow-3x=-\dfrac{17}{6}\\ \Rightarrow x=\left(-\dfrac{17}{6}\right):\left(-3\right)\\ \Rightarrow x=\dfrac{17}{18}\)
\(a,\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{2}{3}x-\dfrac{1}{2}x-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\left(\dfrac{2}{3}-\dfrac{1}{2}\right)-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\dfrac{1}{6}=-\dfrac{11}{15}\\ \Rightarrow x=-\dfrac{22}{5}\\ b,\dfrac{1}{3}x+\dfrac{2}{5}.\left(x+1\right)=0\\ \Rightarrow\dfrac{1}{3}x+\left(x+1\right)=-\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{2}{5}-\left(x+1\right)\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{7}{5}-x\\ \Rightarrow\dfrac{1}{3}.2x=-\dfrac{7}{5}\\ \Rightarrow2x=-\dfrac{21}{5}\\ \Rightarrow x=-\dfrac{21}{10}.\)
1,\(\dfrac{-1}{4}-\dfrac{3}{4}:x=-\dfrac{11}{36}\)
\(-\dfrac{3}{4}:x=\left(-\dfrac{1}{4}\right)-\left(-\dfrac{11}{36}\right)\)
\(-\dfrac{3}{4}:x=\dfrac{1}{18}\)
\(x=\left(-\dfrac{3}{4}\right):\left(\dfrac{1}{18}\right)\)
\(x=\dfrac{27}{2}\)
2, \(\dfrac{3}{4}x-\dfrac{1}{2}=\dfrac{3}{7}\)
\(\dfrac{3}{4}x=\dfrac{3}{7}+\dfrac{1}{2}\)
\(\dfrac{3}{4}x=\dfrac{13}{14}\)
\(x=\dfrac{13}{14}:\dfrac{3}{4}\)
\(x=\dfrac{26}{21}\)
a, - \(\dfrac{1}{10}\) + \(\dfrac{2}{5}\)\(x\) + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\)\(x\) = \(\dfrac{1}{10}\) - \(\dfrac{7}{20}\) + \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\) \(x\) = - \(\dfrac{3}{20}\)
\(x\) = - \(\dfrac{3}{20}\): \(\dfrac{2}{5}\)
\(x\) = - \(\dfrac{3}{8}\)
b, \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{8}{15}\)
\(x\) = \(\dfrac{1}{2}\): (- \(\dfrac{8}{15}\))
\(x\) = - \(\dfrac{15}{16}\)
| x - 2,4| = \(\dfrac{1}{2}\)
\(\left[{}\begin{matrix}x-2,4=\dfrac{1}{2}(đk:x>2,4)\\x-2,4=-\dfrac{1}{2}(đk:x< 2,4)\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{1}{2}+2,4\\x=-\dfrac{1}{2}+2,4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2,9(tm)\\x=1,9(tm)\end{matrix}\right.\)
vậy \(x\in\) { 1,9 ; 2,9}
x=2/9