Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin a = \( {đối \over huyền}\) =3/5 => kề bằng 4 ( bạn tính theo pytago nha)
kẻ trục oxy sau đó lấy điểm A trên ox sao cho OA = 4, lấy B trên Oy sao cho OB = 3.
Bài này dễ , nhưng bạn phải dùng máy tính nha ...
Bạn thao tác trên máy Casio : SHIFT -> sin -> ( rồi điền 2/5 ) = . sẽ ra kết quả là : 23.57817848 xong tiếp tục bấm phím độ
là cái phím có chữ B . nó sẽ hiện ra kết quả là 23 độ 34 phút 41,44 giây . Vậy góc a = \(23^.34^'\)
Dựng góc nhọn a biết sin a =2/3. Đc vẽ bằng góc xOy
a: sin a=1/2
=>a=30 độ
b: cos a=2/3
=>\(a\simeq48^0\)
c: tan a=4/5
=>\(a\simeq39^0\)
d: \(cota=\dfrac{3}{4}\)
=>tan a=4/3
=>\(a\simeq53^0\)
Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,
Bài 2:
Sửa đề: \(\sin\alpha=\dfrac{3}{5}\)
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Leftrightarrow\cos\alpha=\dfrac{4}{5}\)
Ta có: \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{5}\cdot\dfrac{5}{4}=\dfrac{3}{4}\)
Ta có: \(\cot\alpha=\dfrac{1}{\tan\alpha}\)
\(=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
Dựng tam giác vuông có cạnh huyền bằng 3, một cạnh góc vuông có độ dài bằng 2, khi đó góc kề cạnh góc vuông có độ dài bằng 2 là góc α cần dựng
Ta có: cosα = 2 3 => α ≈ 48 0 11 '
góc a=41,81 độ