Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu a+b+c=0 thì a3-b3+c3-3abc=0
Nếu 10x2-10y2-z2=0 thì (7x-3y+2z)(7x-3y-2z)=(3x-7y)2
1,Áp dụng hằng đẳng thức ( hình như bn viết sai)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
2, I am stupid so I don't know.
\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)
Bài 1:
Bạn tham khảo tại link sau:
Câu hỏi của hậuu đậuu - Toán lớp 8 | Học trực tuyến
Bài 2:
Ta có:
\(a^3+b^3+c^2-3abc=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)
\(=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a,b,c$ là 3 số dương nên $a+b+c>0$ . Suy ra $a+b+c\neq 0$
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Vì \((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c>0\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\)
\(\Rightarrow a=b=c\)
Ta có đpcm.
Bài 3:
Áp dụng công thức \((a-b)(a+b)=a^2-b^2\):
\(C=(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)
\(=(3-2)(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)
\(=(3^2-2^2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)
\(=(3^4-2^4)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)
\(=(3^8-2^8)(3^8+2^8)(3^{16}+2^{16})\)
\(=(3^{16}-2^{16})(3^{16}+2^{16})=3^{32}-2^{32}\)