K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

10 tháng 10 2021

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

10 tháng 10 2021

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

22 tháng 3 2020

Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0

=x(x+3)+2(x+3)=(x+2)(x+3)=0

Dễ rồi

2)\(x^2-x-6=0=x^2-3x+2x-6=0\)

=x(x-3)+2(x-3)=0

=(x+2)(x-3)=0

Dễ rồi

3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)

\(x^2+1>0\)

=>\(\left(x+2\right)^2=0\)

Dễ rồi

4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0

=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)

=>x+1=0

=>..................

5)\(x^2-7x+6=x^2-6x-x+6\) =0

=x(x-6)-(x-6)=0

=(x-1)(x-6)=0

=>.....

6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0

=2x(x+1)-5(x+1)=0

=(2x-5)(x+1)=0

7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0

Dễ rồi

Nghỉ đã hôm sau làm mệt