Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)
\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)
\(A=\sqrt{\left(9\sqrt{2}+2\sqrt{3}\right)^2}-\sqrt{\left(9\sqrt{2}-\sqrt{3}\right)^2}\)
\(=\left|9\sqrt{2}+2\sqrt{3}\right|-\left|9\sqrt{2}-\sqrt{3}\right|\)
\(=9\sqrt{2}+2\sqrt{3}-9\sqrt{2}+\sqrt{3}=3\sqrt{3}\)
Kiểm tra lại đề bài câu B, chỗ \(\sqrt{2+\sqrt{2+2}}\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
Ta có :
\(A.B=\dfrac{24}{\sqrt{x}+6}.\dfrac{\sqrt{x}+6}{\sqrt{x}-6}\)
\(=\dfrac{24}{\sqrt{x}-6}\)
Để \(AB\le12\Leftrightarrow\dfrac{24}{\sqrt{x}-6}\le12\)
\(\Leftrightarrow\dfrac{24-12\left(\sqrt{x}-6\right)}{\sqrt{x}-6}\le0\)
\(\Leftrightarrow24-12\sqrt{x}+72\le0\)
\(\Leftrightarrow-12\sqrt{x}\le-96\)
\(\Leftrightarrow\sqrt{x}\ge8\)
\(\Leftrightarrow x\ge64\)
Vậy \(x\ge64\) thì \(AB\le12\)
a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)
\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)
b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)
Vì \(\sqrt{x}+6\ge6\)
\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)
Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)
Vậy GTLN L là 4 khi x = 0
a: \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)
\(=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{2}=\dfrac{4}{2}=2\)
b: \(\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}\)
\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}\)
\(=\dfrac{\sqrt{6}}{\sqrt{15}}=\sqrt{\dfrac{6}{15}}=\sqrt{\dfrac{2}{5}}=\dfrac{\sqrt{10}}{5}\)
c: \(\sqrt{9a}+\sqrt{81a}+3\sqrt{25a}-16\sqrt{49a}\)
\(=3\sqrt{a}+9\sqrt{a}+3\cdot5\sqrt{a}-16\cdot7\sqrt{a}\)
\(=27\sqrt{a}-112\sqrt{a}=-85\sqrt{a}\)
d: \(\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\sqrt{ab}-\sqrt{bc}}\)
\(=\sqrt{ab}+\sqrt{bc}\)
e: \(a\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}+b\cdot\sqrt{\dfrac{a}{b}}}\right)\cdot\sqrt{ab}\)
\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab+2\sqrt{ab}\cdot ab+b\cdot\sqrt{\dfrac{a}{b}}\cdot ab}\)
\(=a\cdot\sqrt{a^2+2\cdot ab\cdot\sqrt{ab}+a\sqrt{a}\cdot b\sqrt{b}}\)
\(=a\cdot\sqrt{a^2+3\cdot a\cdot\sqrt{a}\cdot b\cdot\sqrt{b}}\)
e: ĐKXĐ: a>=0 và a<>1
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)
\(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\left(a-\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)^2\cdot\left(a-\sqrt{a}+1\right)\)
\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)
\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)
\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
ta có: \(2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}=2.\sqrt{2}.\sqrt{5}+\sqrt{2}.\sqrt{5}.\sqrt{3}-2.\sqrt{2}-\sqrt{2}.\sqrt{3}\)
=>\(\sqrt{2}.\sqrt{5}.\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right).\sqrt{2}.\left(\sqrt{5}-1\right)\)
lại có \(2.\sqrt{10}-2\sqrt{2}=2.\sqrt{2}.\left(\sqrt{5}-1\right)\)
thay vào H ta có : H= \(\frac{2+\sqrt{3}}{2}:\frac{2}{\sqrt{3}-1}=\frac{1+\sqrt{2}}{4}\)
1.
Ta có: \(E=\sqrt{37-6\sqrt{30}}=\sqrt{\left(3\sqrt{3}-\sqrt{10}\right)^2}=\left|3\sqrt{3}-\sqrt{10}\right|=3\sqrt{3}-\sqrt{10}\)
\(F=\sqrt{51-6\sqrt{30}}=\sqrt{\left(3\sqrt{5}-\sqrt{6}\right)^2}=\left|3\sqrt{5}-\sqrt{6}\right|=3\sqrt{5}-\sqrt{6}\)
\(G=\sqrt{59-6\sqrt{30}}=\sqrt{\left(3\sqrt{6}-\sqrt{5}\right)^2}=\left|3\sqrt{6}-\sqrt{5}\right|=3\sqrt{6}-\sqrt{5}\)
\(H=\sqrt{17-2\sqrt{30}}=\sqrt{\left(\sqrt{15}-\sqrt{2}\right)^2}=\left|\sqrt{15}-\sqrt{2}\right|=\sqrt{15}-\sqrt{2}\)
\(E=\sqrt{37-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{3}-\sqrt{10}\right)^2}\\ =\left|3\sqrt{3}-\sqrt{10}\right|\\ =3\sqrt{3}-\sqrt{10}\)
\(F=\sqrt{51-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{5}-\sqrt{6}\right)^2}\\ =\left|3\sqrt{5}-\sqrt{6}\right|\\ =3\sqrt{5}-\sqrt{6}\)
\(G=\sqrt{59-6\sqrt{30}}\\ =\sqrt{\left(3\sqrt{6}-\sqrt{5}\right)^2}\\ =\left|3\sqrt{6}-\sqrt{5}\right|\\ =3\sqrt{6}-\sqrt{5}\)
\(H=\sqrt{17-2\sqrt{30}}\\ =\sqrt{\left(\sqrt{15}-\sqrt{2}\right)^2}\\ =\left|\sqrt{15}-\sqrt{2}\right|=\sqrt{15}-\sqrt{2}\)