Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)
Bài 2 : Bài giải
\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)
\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)
Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)
\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)
\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)
Ta có: \(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{5^{18}.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)
\(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)
Vì \(\left(\dfrac{3}{5}\right)^{18}< \left(\dfrac{3}{5}\right)^{17}\Rightarrow A< B\)
Vậy A < B
Đặt\(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{175^9.7^3}=\dfrac{3^{18}.7^{12}}{\left(5^2\right)^9.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)
Đặt \(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.3^7.2^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)
Mà \(\left(\dfrac{3}{5}\right)^{18}>\left(\dfrac{3}{5}\right)^{17}\Leftrightarrow A>B\)
\(\Rightarrow\dfrac{3^6.21^{12}}{175^9.7^3}>\dfrac{3^{10}.6^7.4}{10^9.5^8}\)
a: \(=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^9\cdot7^3}=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^{12}}\)
b: \(=\dfrac{3^{10}\cdot3^7\cdot2^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\dfrac{3^{17}}{5^{17}}\)
4) \(3^{n+2}+3^n=270\)
\(\Rightarrow3^n.3^2+3^n=270\)
\(\Rightarrow3^n.\left(3^2+1\right)=270\)
\(\Rightarrow3^n.\left(9+1\right)=270\)
\(\Rightarrow3^n.10=270\)
\(\Rightarrow3^n=270:10\)
\(\Rightarrow3^n=27\)
\(\Rightarrow3^n=3^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=4^x\)
\(\Leftrightarrow\)\(\frac{1.2.3.4.5.....30.31}{4.6.8.10.12.....62.64}=4^x\)
\(\Leftrightarrow\)\(\frac{2.3.4.5.....30.31}{2\left(2.3.4.5.....30.31\right).64}=4^x\)
\(\Leftrightarrow\)\(\frac{1}{128}=4^x\)
\(\Leftrightarrow\)\(2^{2x}=2^{-7}\) ( trong sgk có phần đọc thêm nói về cái này nhé )
\(\Leftrightarrow\)\(2x=-7\)
\(\Leftrightarrow\)\(x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
Đặt: \(A=\frac{3^6.21^{12}}{175^9.7^3}=\frac{3^{18}.7^{12}}{7^{12}.25^9}=\frac{3^{18}}{5^{18}}=\left(\frac{3}{5}\right)^{18}\)
\(B=\frac{3^{10}.6^7.4}{10^9.5^8}=\frac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\frac{3^{17}.2^9}{2^9.5^{17}}=\left(\frac{3}{5}\right)^{17}\)
Vì: \(\left(\frac{3}{5}\right)^{18}< \left(\frac{3}{5}\right)^{17}\Rightarrow A< B\)
cảm ơn bạn nhiều nha!