Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đó có dạng: abcd (a khác 0)
Theo bài ra có: b=2a và \(c=\frac{2b}{3}=\frac{4a}{3}\)
Để số đó chia hết cho 5 => d=0 hoặc d=5
+/ d=0 => số có dạng: abc0
Tổng các chữ số là: a+b+c+d=a+2a+\(\frac{4a}{3}\)+0=\(\frac{13a}{3}\)Để số đó chia hết cho 9 thì \(\frac{13a}{3}\)chia hết cho 9 => Không có giá trị thỏa mãn,
+/ d=5 => số có dạng: abc5
Tổng các chữ số là: a+b+c+d=a+2a+\(\frac{4a}{3}\)+5=\(\frac{13a}{3}+5\)Để số đó chia hết cho 9 thì \(\frac{13a}{3}+5\)chia hết cho 9 => a=3
a=3 => b=2x3=6; c\(=\frac{4x3}{3}=4\)
ĐS: Số cần tìm là: 3645
Bài 1: Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d
Bài 2: Số đó chia hết cho 4 và 5 nên y=0
Vậy 6+x+1+4+y = 11+x chia hết cho 3
=> x=1, 4; 7
Vậy ta tìm được 3 số: 61140 ; 64140; 67140
Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d\
HT
sai đề à bạn
Gọi số tự nhiên cần tìm là: \(\overline{4a5b}\)với \(0\le a;b\le9\)và b>3.a
+) Với a=0 => b=0 loại
+) với \(a\ge3\Rightarrow b>9\)loại
+) Với a=1 => b>3.1=3
Ta có : 4+a+5+b=4+1+5+b=10+b chia hết cho 9
=> b=8 >3 thỏa mãn
=> Số tự nhiên cần tìm là: 4158
+) Với a=2 => b>3.2=6
Ta có: 4+a+5+b=4+2+5+b=11+b chia hết cho 9
=> b=7 >6 thỏa mãn
=> Số tự nhiên cần tìm là: 4257