Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)
+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số
+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)
Vậy P + 8 là hợp số
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
a) 2A=2^2+2^3+...+2^100
A= 2A-A= 2^100-2 không phải là số chính phương
A+2 = 2^100 là số chính phương
b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A
c) 2100 - 2 = 299.2-2=833.2 -2 => n rỗng
d) ta có: 24k chia 7 dư 2
2100-2 = 24.25-2 chia hết chp 7
e) ta có: 24k chia 6 dư 4
2100-2 = 24.25-2 chia 6 dư 2
f) ta có: 24k tận cùng 6
2100-2 = 24.25-2 tận cùng 4
câu a
15! có chứa 2(hoặc 4,6,8,...)*5 cho ra kết quả có tận cùng =0
0+2=2 vậy tận cùng của 15!+2 bằng 2