Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
\(\dfrac{20142014}{20152015}\times x+7986=1+3+5+...+199\)
Vì các số ở vế 2 đều cách nhau 2 đơn vị
=> Số số hạng của vế 2 là \(\left(199-1\right)\div2+1=100\) ( số hạng )
=> Tổng của vế 2 là \(\left(199+1\right)\times100\div2=10000\)
Thay vào biểu thức, ta có:
\(\dfrac{20142014}{20152015}\times x+7986=10000\)
\(\dfrac{2014}{2015}\times x=10000-7986=2014\)
\(x=2014\div\dfrac{2014}{2015}\)
\(x=2015\)
\(\dfrac{20142014}{20152015}\)\(x\)+ 7986 = 1 + 3 + 5 + ...+ 197 + 199
\(\dfrac{2014}{2015}\)\(x\) + 7986 = (199 + 3){ (199 -1): 2 + 1}: 2
\(\dfrac{2014}{2015}\)\(x\) + 7986 = 202. 100: 2
\(\dfrac{2014}{2015}x\) = 10000
\(\dfrac{2014}{2015}\)\(x\) = 10000 - 7986
\(\dfrac{2014}{2015}\)\(x\) = 2014
\(x\) = 2014 : \(\dfrac{2014}{2015}\)
\(x\) = 2015
a. Ta có \(\frac{-29}{39}=-1+\frac{10}{39}\)
\(\frac{-39}{49}=-1+\frac{10}{49}\)
có -1 = -1 mà \(\frac{10}{39}>\frac{10}{49}\)do cùng tử mà mẫu càng lớn thì phân số đó bé hơn
vì vậy nên \(\frac{-29}{39}>\frac{-39}{49}\)
b. có \(\frac{20142014:\text{10001}}{20152015:\text{10001}}=\frac{2014}{2015}\)
vậy \(\frac{20142014}{20152015}=\frac{2014}{2015}\)
Chúc bạn học tốt
Ta ra ngọn thành :
1 + 2 + 3 + 4 + 5 +......+2016
Dãy số trên có số số hạng là :
( 201 6 - 1 ) :1 + 1 = 2016 ( số )
Tổng dãy trên là :
( 2016 + 1 ) x 2016 : 2 = 2 033 136
Vậy 3 chữ số tận cùng là 136
~~ tk mk nha ~~
Ai tk mk mk tk lại ~~
Kb vs mk ik m.n ~~ n_n
Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)
Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).
Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\).
Vậy (*) đã được chứng minh.
\(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)
\(a_n^{4k}\)