Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ bạn viết hơi sai đề bài.
\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)
Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)
\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)
Khi đó:
\(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)
1) Ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Rightarrow Min\)\(A=2\Leftrightarrow a=b\)
2) Ta có : xy < 0 => Một trong hai số x,y tốn tại một số âm và một số dương.
Ta xét hai trường hợp :
1. Với \(x< 0< y\), ta có :
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{-\left(x-y\right)}\left(\frac{x}{-x}+\frac{y}{y}\right)=-1-1\left(-1+1\right)=-1\)
2. Với \(y< 0< x\) ta có :
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{x-y}\left(\frac{x}{x}+\frac{y}{-y}\right)=-1+1.\left(1-1\right)=-1\)
Vậy ta kết luận : Với xy<0 thì giá trị của P là : -1
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng