K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

1. Tìm n thuộc N để các biểu thức là số nguyên tố

a ) \(P=\left(n-3\right)\left(n+3\right)\)

               \(\left(n-3\right)\left(n+3\right)=0\)

                \(n^2-3^2=0\)

                \(n^2-9=0\)

                \(n^2=9\)

                \(n=\sqrt{9}\)

                \(n=3\)

7 tháng 8 2016

LAMF TIẾP MẤY CÂU KIA ĐI

1 tháng 8 2016

Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:

x + 11236918
y + 11896321
x0125817
y1785210
7 tháng 7 2018

\(\frac{n-1}{n-3}\) \(=\frac{n-3+2}{n-3}=1+\frac{2}{n-3}\)

dể \(\frac{n-1}{n-3}\)thuộc Z <=> \(\frac{2}{n-3}\)thuộc Z

mà n thuộc Z

=> \(n-3\)thuộc ước của 2

=> \(n-3\)thuộc \(\left(1;-1;2;-2\right)\)

=> \(n\)thuộc \(\left(4;2;5;1\right)\)

\(\frac{n-2}{n-5}=\frac{n-5+3}{n-5}\) \(=1+\frac{3}{n-5}\)

tg tự câu trên

25 tháng 4 2023

ko nhìn ra

 

9 tháng 8 2015

a,   =>(n+3)-5n+5 chia hết cho n+3

      => 5n+5 chia hết cho n+3

     =>5(n+3)-10 chia hết cho n+3

     =>10 chia hết cho n+3 

     =>n+3 thuộc ước của 10

sau đó bạn tự kẻ bảng nhé

Mik chỉ làm đc con a thui sorry nhé

 

6 tháng 3 2018

giúp mình nha !

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản