K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2023

`@` H/s xác định `<=>{(x+2 >= 0),(2-x >= 0):}<=>{(x >= -2),(x <= 2):}<=>-2 <= x <= 2`

   `=>TXĐ: D=[-2;2]`

`@-2 <= x <= 2`

`<=>{(0 <= x+2 <= 4),(2 >= -x >= -2):}`

`<=>{(0 <= x+2 <= 4),(4 >= 2-x >= 0):}`

`<=>{(0 <= \sqrt{x+2} <= 2),(2 >= \sqrt{2-x} >= 0):}`

   `=>TGT` là `[0;2]`

15 tháng 1 2023

\(y=\sqrt{x+2}+\sqrt{2-x}\)

y có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\2-x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>2\end{matrix}\right.\)

TXD D = \(\left(2;+\infty\right)\)

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

a: ĐKXĐ: x\(\in\)R\{3}

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)

16 tháng 1 2021

\(y\) có TXĐ là \(\mathbb{R}\) \(\Leftrightarrow (mx+3)(x-2) ≥0\)

TH1: \(\left[ \begin{array}{l}mx+3\\x-2=0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{-3}{m} (m\ne0)\\x=2\end{array} \right.\)

TH2: \(\begin{cases}mx+3>0\\x-2>0\\\end{cases} \Leftrightarrow \begin{cases}x > \dfrac{-3}{m} \\x>2\\\end{cases} \)

TH3: \(\begin{cases}mx+3<0\\x-2<0\\\end{cases} \Leftrightarrow \begin{cases}x < \dfrac{-3}{m}\\x<2\\\end{cases} \)

Vậy...

Tìm m mà bn 

NV
26 tháng 3 2021

ĐKXĐ: \(\dfrac{\left|x-1\right|}{x+2}-1\ge0\Leftrightarrow\dfrac{\left|x-1\right|}{x+2}>1\)

Với \(x< -2\) ko thỏa mãn

Với \(x>-2\Rightarrow x+2>0\)

BPT tương đương: \(\left|x-1\right|>x+2\Rightarrow\left(x-1\right)^2>\left(x+2\right)^2\)

\(\Leftrightarrow6x< -3\Rightarrow x< -\dfrac{1}{2}\Rightarrow-2< x< -\dfrac{1}{2}\)

\(\Rightarrow x=-1\) là số nguyên duy nhất trong TXĐ của hàm số

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
\(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}=\sqrt{(\sqrt{x+2}+1)^2}+\sqrt{(\sqrt{1-x^2}+1)^2}\)

\(=|\sqrt{x+2}+1|+|\sqrt{1-x^2}+1|=\sqrt{x+2}+\sqrt{1-x^2}+2\)

ĐKXĐ: \(\left\{\begin{matrix} x+2\geq 0\\ 1-x^2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ -1\leq x\leq 1\end{matrix}\right.\Leftrightarrow -1\leq x\leq 1\)

TXĐ: D=R\{3;-3}

NV
4 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x+2\ge0\\1-x^2\ge0\end{matrix}\right.\) \(\Rightarrow-1\le x\le1\)

b. \(D=R\)

27 tháng 11 2023

\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)

\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)

\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)

=>-1<=x<=1

TXĐ là D=[-1;1]