Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11/13-(5/42-x)=(15/28-11/13)
11/13-(5/42-x)=-37/182
(5/42-x)=11/13+37/182
(5/42-x)=191/182
x=5/42-191/182
x=-254/273
vậy x=-254/273
a ) \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{\left(-11\right)}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{19}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\frac{19}{70}=\frac{3}{35}\)
=> \(\frac{2}{5}+x+\frac{3}{2}=\frac{3}{7}-\frac{3}{35}=\frac{12}{35}\)
=> \(\frac{2}{5}+x=\frac{12}{35}-\frac{3}{2}=-\frac{81}{70}\)
=> \(x=-\frac{81}{70}-\frac{2}{5}=-\frac{109}{70}\)
b) \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
=> \(\frac{3}{4}x-6=\frac{5}{2}\)
=> \(\frac{3}{4}x=\frac{17}{2}\)
=> \(x=\frac{17}{2}:\frac{3}{4}=\frac{34}{3}\)
Câu c,d tự làm nhé
a. \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{-11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\left(\frac{19}{10}+x\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\frac{19}{10}-x=\frac{5}{14}-\left|\frac{19}{70}\right|=\frac{5}{14}-\frac{19}{70}\)
\(\Rightarrow-\frac{103}{70}-x=\frac{3}{35}\)
\(\Rightarrow x=-\frac{103}{70}-\frac{3}{35}\)
\(\Rightarrow x=-\frac{109}{70}\)
b. \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
\(\Rightarrow\frac{3}{4}\left(x-8\right)=\frac{5}{7}.\frac{7}{2}=\frac{5}{2}\)
\(\Rightarrow x-8=\frac{10}{3}\)
\(\Rightarrow x=\frac{34}{3}\)
c. \(\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow\frac{1}{2}=\frac{2}{3}-7x-4x=\frac{2}{3}-11x\)
\(\Rightarrow11x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
d. \(4\left(\frac{1}{2}-x\right)-5\left(x-\frac{3}{10}\right)=\frac{7}{4}\)
\(\Rightarrow2-4x-5x+\frac{3}{2}=\frac{7}{4}\)
\(\Rightarrow2-9x=\frac{1}{4}\)
\(\Rightarrow9x=\frac{7}{4}\)
\(\Rightarrow x=\frac{7}{36}\)
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
a,
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^{x+3}2=2.5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
b, (Check lai xem de sai o dau khong nhe)
\(3.5^{x+2}+4.5^{x+3}=19.5^{10}\)
Dat 5x ra ben ngoai
\(\Rightarrow5^x.5^23+5^x:5^{-3}.4\)
\(\Rightarrow5^x\left(5^2.3+5^{-3}.4\right)\)
\(\Rightarrow5^x\left(5^{-3}.5^5.3+5^{-3}.4\right)\)
\(\Rightarrow5^x[5^{-3}\left(5^53+4\right)\)
\(\Rightarrow5^x[5^{-3}\left(3125.3+4\right)\)
\(\Rightarrow5^x\left(5^{-3}\right).9379\)
=> Khong tim duoc gia tri cua x \(\Rightarrow x\in\varnothing\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a: \(\dfrac{x-6}{7}+\dfrac{x-7}{8}+\dfrac{x-8}{9}=\dfrac{x-9}{10}+\dfrac{x-10}{11}+\dfrac{x-11}{12}\)
\(\Leftrightarrow\left(\dfrac{x-6}{7}+1\right)+\left(\dfrac{x-7}{8}+1\right)+\left(\dfrac{x-8}{9}+1\right)=\left(\dfrac{x-9}{10}+1\right)+\left(\dfrac{x-10}{11}+1\right)+\left(\dfrac{x-11}{12}+1\right)\)
=>x+1=0
hay x=-1
c: |x-2|=13
=>x-2=13 hoặc x-2=-13
=>x=15 hoặc x=-11
d: \(\Leftrightarrow3\left|x-2\right|+4\left|x-2\right|=2-\dfrac{1}{3}=\dfrac{5}{3}\)
=>7|x-2|=5/3
=>|x-2|=5/21
=>x-2=5/21 hoặc x-2=-5/21
=>x=47/21 hoặc x=37/21
a, (\(\dfrac{9}{10}\) - \(\dfrac{15}{16}\)) \(\times\) ( \(\dfrac{5}{12}\) - \(\dfrac{11}{15}\) - \(\dfrac{7}{20}\))
= (\(\dfrac{72}{80}\) - \(\dfrac{75}{80}\)) \(\times\) (\(\)\(\dfrac{25}{60}\) - \(\dfrac{44}{60}\) - \(\dfrac{21}{60}\))
= - \(\dfrac{3}{80}\) \(\times\) (- \(\dfrac{2}{3}\))
= \(\dfrac{1}{40}\)
b, (-1)3 + (- \(\dfrac{2}{3}\))2 : 2\(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)
= -13 + \(\dfrac{4}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{3}{8}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{1}{6}\) + \(\dfrac{5}{6}\)
= -1 + 1
= 0
Bài 1:
1: 7/20-|x+2/5|=10/21
=>|x+2/5|=-53/420(vô lý)
2: \(\left|\dfrac{3}{7}-x\right|-\left(-\dfrac{2}{3}\right)=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x-\dfrac{3}{7}\right|=\dfrac{3}{2}-\dfrac{2}{3}=\dfrac{5}{6}\)
=>x-3/7=5/6 hoặc x-3/7=-5/6
=>x=53/42 hoặc x=-17/42