Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>5/42-x=11/13-15/28+11/13=421/364
=>x=-1193/1092
b: =>\(\dfrac{7}{2}-2x=7+\dfrac{6}{5}-3-\dfrac{2}{5}-1-\dfrac{4}{5}=3\)
=>2x=1/2
=>x=1/4
c: =>|2x-1/3|=-1/3(vô lý)
d: =>2x-1=-3
=>2x=-2
hay x=-1
e: =>2x=16
hay x=8
a. \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{-113}{364}\right)=\dfrac{113}{364}\)
\(\Rightarrow\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}-\dfrac{113}{364}\)
\(\Rightarrow\left(\dfrac{5}{42}-x\right)=\dfrac{15}{28}\)
\(\Rightarrow x=\dfrac{5}{42}-\dfrac{15}{28}=\dfrac{-5}{12}\)
Vậy..............
b. \(2x.\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{7}\end{matrix}\right.\)
Vậy............
c. \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}=\dfrac{-5}{7}\)
Vậy...........
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
11/13-(5/42-x)=(15/28-11/13)
11/13-(5/42-x)=-37/182
(5/42-x)=11/13+37/182
(5/42-x)=191/182
x=5/42-191/182
x=-254/273
vậy x=-254/273
a, 11/13 - ( 5/42 - x ) = - (5/28 - 11/13)
11/13 - (5/42 - x) = - 5/28 + 11/13
- (5/42 - x) + 5/28 = -11/13 + 11/13
- 5/42 + x + 5/28 = 0
- 5/42 + x = 0 - 5/28
- 5/42 + x = - 5/28
x = -5/28 +5/42
x = - 5/84
b, / x + 4/15 \ - / - 3,75 \ = - / - 2,15 \
./ x + 4/15 \ - 3,75 = - 2,15
/ x + 4/15 \ = -2,15 + 3,75
/ x + 4/15 \ = 1,6
x + 4 / 15 = 1,6 hoặc x+ 4/15 = - 1,6
x = 1,6 - 4/15 x = - 1,6 -4/15
x = 4/3 x = -28/15
Vậy x = 4/3 hoặc x = - 28/15
c, ( 0,25 - 30% x ) . 1/3 = 1/4 - 31/6
( 1/4 - 3/10 x ) . 1/3 = - 59/12
( 1/4 - 3/10 x ) = - 59/12 : 1/3
1/4 - 3/10 x = - 59/4
3/10 x = 1/4 + 59/4
3/10 x = 15
x = 15 : 3/10
x = 50
d, ( x - 1/2 ) : 1/3 + 5/7 = 68/7
( x - 1/2 ) : 1/3 = 68/7 - 5/7
( x - 1/2 ) : 1/3 = 63/7
( x - 1/2 ) = 63/7 . 1/3
x -1/2 = 3
x = 3 + 1/2
x = 7/2
a,\(\frac{11}{12}-\left(\frac{5}{42}-x\right)=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{42}+x=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{28}-\frac{11}{12}-\frac{11}{12}+\frac{5}{42}\)
\(\Leftrightarrow x=\left(\frac{15}{28}+\frac{5}{42}\right)-\left(\frac{11}{12}+\frac{11}{12}\right)\)
\(\Leftrightarrow x=\frac{55}{84}-\frac{11}{6}\)
\(\Leftrightarrow x=\frac{-33}{28}\)
b, \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Giải :
\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow4.\left(x-1\right)=3.\left(x-2\right)\)
\(\Rightarrow4x-4=3x-6\)
\(\Rightarrow4x-4-3x+6=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)Không thỏa mãn => Không có giá trị x thỏa mãn đề bài
\(\frac{2x-3}{x+1}=\frac{4}{7}\)
\(\Rightarrow7.\left(2x-3\right)=4.\left(x+1\right)\)
\(\Rightarrow14x-21-4x-4=0\)
\(\Rightarrow10x-25=0\)
\(\Rightarrow10x=25\)
\(\Rightarrow x=\frac{25}{10}=\frac{5}{2}\)
Giá trị trên thỏa mãn đầu bài
Các phần khác em làm tương tự nha
a/ x = 4
a) 2x.(1 + 23) = 144
2x . 9 = 144
2x = 16
=> x = 4
b) (2x - 1)10 = (2x - 1)100
(2x - 1)100 - (2x - 1)10 = 0
(2x - 1)10.[ (2x - 1)90 - 1] = 0
=> (2x - 1)10 = 0 hoặc (2x - 1)90 - 1 = 0
=> 2x = 1 hoặc (2x - 1)90 = 1
=> x = \(\frac{1}{2}\) hoặc \(2x-1=\orbr{\begin{cases}1\\-1\end{cases}}\)
=> \(2x=\orbr{\begin{cases}2\\0\end{cases}}\)
=> x = {\(\frac{1}{2};1;0\)}