Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
a) (5n - 2)2 - (2n - 5)2
= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)
= (3n + 3) (7n - 7)
= 21n2 - 21n + 21n - 21
= 21n2 - 21 \(⋮\) 21
Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z
b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3
Hiệu bình phương của 2 số lẻ liên tiếp là:
(2x + 1)2 - (2x + 3)2
= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)
= -2.(4x + 4)
= -2.4(x + 1)
= -8(x + 1) \(⋮\) 8
Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
Bài 1:
a: \(\Leftrightarrow4x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
b: \(\Leftrightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
=>(2x-6)(4x-4)=0
=>x=1 hoặc x=3
c: \(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
=>(-2x-4)(12x-4)=0
=>x=1/3 hoặc x=-2