Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết : \(\left|x-2\right|+\left|2x-3\right|=5\)
\(=>\hept{\begin{cases}x=7\\x=4\end{cases}}\)
tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-102\right|+\left|2-x\right|\)
nếu \(\hept{\begin{cases}x-102=0\\2-x=0\end{cases}}\)thì =>\(\hept{\begin{cases}x=102\\2\end{cases}}\)
nếu thấy đúng k nha
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0