Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
mọi người ơi câu b là giá trị tuyệt đối của x^2 -1 nha
giúp mình mình tick cho
a) \(\Leftrightarrow x^2+\dfrac{2}{3}x-x^2+\dfrac{3}{4}x=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{17}{12}x=\dfrac{7}{12}\Leftrightarrow x=\dfrac{7}{17}\)
c) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=-1\\2x+1=1\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a) \(\left|x-1\right|+\left|x+3\right|=4\left(1\right)\)
+) TH1: Nếu \(x< -3\) thì \(x-1< 0;x+3< 0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=-x-3\)
PT (1) trở thành: \(-x+1-x-3=4\)
\(\Leftrightarrow-2x=6\Leftrightarrow x=-3\left(loại\right)\)
+) TH2: Nếu \(-3\le x< 1\) thì \(x-1< 0;x+3>0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(-x+1+x+3=4\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Kết hợp với đk ta được: \(\Rightarrow-3\le x< 1\)
+) TH3: Nếu \(x\ge1\) thì \(x-1>0;x+3>0\)
\(\Rightarrow\left|x-1\right|=x-1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(x-1+x+3=4\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\left(t/m\right)\)
Vậy x nằm trong khoảng \(-3\le x\le1.\)
Mấy bài kia làm tương tự.
2.
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=605x\)(1)
Vì các thừa số ở vế phải của (1) đều không âm nên x không âm. Do đó \(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)\)
\(\Rightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=605x\)
\(\Rightarrow10x+\dfrac{10\left(10+1\right)}{2}=605x\)
\(\Rightarrow55=595x\)
\(\Rightarrow x=\dfrac{55}{595}=\dfrac{11}{119}\)
Vậy x = \(\dfrac{11}{119}\)
Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)
Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)
Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
\(a,121-\left(115+x\right)=3x-\left(25-9-5x\right)-8\\ 121-115-x=3x-25+9+5x-8\\ 6-x=8x-24\\ 8x+x=-24-6\\ 9x=-30\\ x=-\dfrac{30}{9}=-\dfrac{10}{3}\\ ----\\ b,2^{x+2}.3^{x+1}.5^x=10800\\ \left(2.3.5\right)^x.2^2.3=10800\\ 30^x.12=10800\\ 30^x=\dfrac{10800}{12}=900=30^2\\ Vậy:x=2\)
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!