Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Bài 1 :
\(xy+2=2x+y\)
=> \(xy-y-\left(2x-2\right)=0\)
=> \(y\left(x-1\right)-2\left(x-1\right)=0\)
=> \(\left(y-2\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}y-2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=2\\x=1\end{cases}}}\)
=> \(\orbr{\begin{cases}y=2;x\in Z\\x=1;y\in Z\end{cases}}\)
1) Giải
xy + 2 = 2x + y
xy + 2 - 2x - y = 0
x ( y - 2 ) - ( y - 2 ) = 0
( y - 2 ).( x - 1 ) = 0
\(\Rightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
2) Giải:
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow\) \(a^2-c^2=d^2-b^2\)
\(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\) (*)
Ta có: \(a+b=c+d\) (**)
\(\Rightarrow a-c=b-d\)
+) Nếu \(a-c=0\)
\(\Rightarrow a=c\) và \(b=d\)
Nên \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)
+) Nếu \(a-c\ne0\) và \(b-d\ne0\)
thì \(a\ne c\) và \(b\ne d\)
Khi đó (*) \(\Leftrightarrow\) \(a+c=b+d\) (***)
Cộng (**) và (***) theo vế:
2a + b + c = 2d + b + c
2a = 2d
a = d
Suy ra b = c
Do đó \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)