Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{u_{n+1}}{n+1}=3.\dfrac{u_n}{n}\)
Đặt \(\dfrac{u_n}{n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{3}\\v_{n+1}=3v_n\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{3}.3^{n-1}=3^{n-2}\)
\(\Rightarrow S=3^{-1}+3^0+...+3^8=...\)
1.
\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$
2.
\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)
\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)
3.
\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)
4.
\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
\(\Leftrightarrow\dfrac{u_{n+1}}{n+1}=\dfrac{1}{3}.\dfrac{u_n}{n}\)
Đặt \(\dfrac{u_n}{n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{3}\\v_{n+1}=\dfrac{1}{3}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{1}{3}\)
\(\Rightarrow v_n=\dfrac{1}{3}.\left(\dfrac{1}{3}\right)^{n-1}=\left(\dfrac{1}{3}\right)^n\)
\(S=\sum\limits^{10}_{k=1}\left(\dfrac{1}{3}\right)^k=\dfrac{\dfrac{1}{3}\left(1-\dfrac{1}{3^{10}}\right)}{1-\dfrac{1}{3}}=\dfrac{1}{2}\left(1-\dfrac{1}{3^{10}}\right)\)
a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)
b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)
\(=\lim\dfrac{1.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\dfrac{1}{3}}}{1.\dfrac{1-\left(\dfrac{2}{5}\right)^{n+1}}{1-\dfrac{2}{5}}}=\lim\dfrac{9}{10}.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\left(\dfrac{2}{5}\right)^{n+1}}=\dfrac{9}{10}\)
1:
\(S=-\left(1-\dfrac{1}{10}+\dfrac{1}{10^2}-...-\dfrac{1}{10^{n-1}}\right)\)
\(=-\left[\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\right]\)
\(u_1=\left(-\dfrac{1}{10}\right)^0;q=-\dfrac{1}{10}\)
\(\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\)
\(=\dfrac{\left(-\dfrac{1}{10}\right)^0\left(1-\left(-\dfrac{1}{10}\right)^{n-1}\right)}{-\dfrac{1}{10}-1}\)
\(=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{-\dfrac{11}{10}}\)
=>\(S=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{\dfrac{11}{10}}\)
2:
\(S=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{n-1}\)
\(u_1=1;q=\dfrac{1}{3}\)
\(S_{n-1}=\dfrac{1\cdot\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)\)
\(1,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{10}:\left(-1\right)=-\dfrac{1}{10}\\u_1=-1\end{matrix}\right.\)
Vậy \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=-\dfrac{10}{11}\)
\(2,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{3}\\u_1=1\end{matrix}\right.\)
Vậy \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)