K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

15 tháng 7 2023

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y}\right)-2x\) (với \(x\ne y,x,y\ge0\))

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}+\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}+\sqrt{y}-\sqrt{x}}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{2\sqrt{y}}{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)}{\sqrt{x}-\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)-2x\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-2x\sqrt{x}-2x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-4x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

22 tháng 10 2023

23 tháng 12 2020

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

23 tháng 12 2020

cái x-3 ở tử phân tích kiểu j ra đc cái kia v bạn

 

3 tháng 9 2021

\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)

\(=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{x\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)

\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\dfrac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\left[\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\left(\sqrt{x}+2\right)^2\)

\(=\dfrac{6\sqrt{x}}{\sqrt{x}-2}\)

3 tháng 9 2021

\(C=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{\sqrt{x}-2}\) (\(x\ge0,x\ne4,x\ne9\))
\(C=\left[\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}\right].\dfrac{\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}.\left(\sqrt{x}+2\right)^2\)
\(C=\dfrac{2}{\sqrt{x}-2}\)
 

a) Ta có: \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Ta có: \(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(\dfrac{2x\sqrt{x}-3x+3\sqrt{x}-1+3x+2\sqrt{x}-1-2x\sqrt{x}+2x-2\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}+1}{x-\sqrt{x}+1}\)

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!