Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
\(M=\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+\frac{16}{40}+...+\frac{81}{90}\)
\(M=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+...+\frac{9}{10}\)
\(M=\frac{\left(9+1\right)\cdot\left(9-1+1\right):2}{10}\)
\(M=\frac{10\cdot9:2}{10}=4,5\)
=2/10+3/10+4/10+......+13/10
=\(\frac{2+3+4+......+13}{10}\)
=90/10=9
k cho mình nha
a, A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....) bắt đầu từ 3
b , B là mỗi lần cộng thêm 6
c , A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....)
d, B là cộng theo số chẵn bắt đầu từ 4
hok tốt
\(\frac{1}{5}+\frac{4}{10}+\frac{9}{15}+\frac{16}{20}+\frac{36}{30}+\frac{64}{40}+\frac{81}{45}\)
\(=\frac{33}{5}\)
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
a.\(M=\left\{5n|n\in N,n\le5\right\}\)
b.\(P=\left\{n^2|n\in N^{\text{*}},n\le9\right\}\)
c.\(N=\left\{3n+1|n\in N,n\le7\right\}\)