K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

1+1=2 bạn ạ

6 tháng 11 2021

TL

1 + 1 =2

bn nhé

31 tháng 10 2021

1+1=2

HT~

31 tháng 10 2021

đúng là toán lớp 12 có khác khó ghê

mik nghĩ mãi còn phải dùng cả máy tính nx mới ra =2

3 tháng 3 2022

= 677626 nhé

9 tháng 3 2022

ok

 

16 tháng 1 2022

Bài 1:1×2×3×4×5×6×7×8×9×10 bằng mấy? Bài 2:5×5×5×5×5×5×5×5×5×5=3628800

 Bài 2:9×9×9×9×9×9×9×9×9×9 = 3486784401 (bạn k cho mình nha)

16 tháng 1 2022

bài 1; = 3628800

bài 2; = 9765625

bài 3; =3486784401

NV
18 tháng 7 2021

Bài này chỉ cần kiên nhẫn, mà mình hơi thiếu kiên nhẫn nên hướng dẫn thôi nghe:

Từ giả thiết hàm đạt max tại \(x=-1\Rightarrow x=-1\) là 1 điểm cực đại

\(\Rightarrow\left\{{}\begin{matrix}f'\left(-1\right)=0\\f''\left(-1\right)< 0\end{matrix}\right.\)

\(f'\left(-1\right)=0\Rightarrow6a-b+2=0\Leftrightarrow b=6a+2\)

Thế vào hàm ban đầu:

\(f\left(x\right)=a\left(x-1\right)^2\left(x^2+4x+5\right)\)

Tới đây tính \(f''\left(-1\right)=-4a< 0\Rightarrow a>0\)

Từ đó hoành độ min, max của f(x) hoàn toàn giống với hoành độ min, max của \(g\left(x\right)=\left(x-1\right)^2\left(x^2+4x+5\right)\)

Đạo hàm, giải phương trình, tính giá trị tại mút và cực trị => min, max

27 tháng 11 2023

Câu 2:

a: \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

=>\(y'=\dfrac{1}{3}\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}\cdot\left(2x^2-x+1\right)'\)

\(=\dfrac{1}{3}\cdot\left(4x-1\right)\left(2x^2-x+1\right)^{-\dfrac{2}{3}}\)

b: \(y=\left(3x+1\right)^{\Omega}\)

=>\(y'=\Omega\cdot\left(3x+1\right)'\cdot\left(3x+1\right)^{\Omega-1}\)

=>\(y'=3\Omega\left(3x+1\right)^{\Omega-1}\)

c: \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

=>\(y'=\dfrac{\left(\dfrac{1}{x-1}\right)'}{3\cdot\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(=\dfrac{\dfrac{1'\left(x-1\right)-\left(x-1\right)'\cdot1}{\left(x-1\right)^2}}{\dfrac{3}{\sqrt[3]{\left(x-1\right)^2}}}\)

\(=\dfrac{-x}{\left(x-1\right)^2}\cdot\dfrac{\sqrt[3]{\left(x-1\right)^2}}{3}\)

\(=\dfrac{-x}{\sqrt[3]{\left(x-1\right)^4}\cdot3}\)

d: \(y=log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Leftrightarrow y'=\dfrac{\left(\dfrac{x+1}{x-1}\right)'}{\dfrac{x+1}{x-1}\cdot ln3}\)

\(\Leftrightarrow y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}:\dfrac{ln3\left(x+1\right)}{x-1}\)

\(\Leftrightarrow y'=\dfrac{x-1-x-1}{\left(x-1\right)^2}\cdot\dfrac{x-1}{ln3\cdot\left(x+1\right)}\)

\(\Leftrightarrow y'=\dfrac{-2}{\left(x-1\right)\cdot\left(x+1\right)\cdot ln3}\)

e: \(y=3^{x^2}\)

=>\(y'=\left(x^2\right)'\cdot ln3\cdot3^{x^2}=2x\cdot ln3\cdot3^{x^2}\)

f: \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

=>\(y'=\left(x^2-1\right)'\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}=2x\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}\)

h: \(y=\left(x+1\right)\cdot e^{cosx}\)

=>\(y'=\left(x+1\right)'\cdot e^{cosx}+\left(x+1\right)\cdot\left(e^{cosx}\right)'\)

=>\(y'=e^{cosx}+\left(x+1\right)\cdot\left(cosx\right)'\cdot e^u\)

\(=e^{cosx}+\left(x+1\right)\cdot\left(-sinx\right)\cdot e^u\)

loading...

24 tháng 11 2017

B

16 tháng 12 2019

1+1=2

ko được đăng linh tinh

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không k "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

P/s: Đây là diễn đàn để học, not phải nơi quảng cáo. Oke!

#HuyềnAnh#

14 tháng 2 2019

các bạn bài này toán lớp 5 nha

mình ghi nhầm

14 tháng 2 2019

\(\frac{99}{98}-\frac{99}{97}+\frac{1}{97.98}\)

\(=\frac{99.97}{97.98}-\frac{99.98}{97.98}+\frac{1}{97.98}\)

\(=\frac{99.97-99.98+1}{97.98}\)

\(=\frac{99.\left(97-98\right)+1}{97.98}\)

\(=\frac{99.\left(-1\right)+1}{97.98}\)

\(=\frac{-99+1}{97.98}\)

\(=\frac{-98}{97.98}=\frac{-1}{97}\)