Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)
-Sửa đề: x,y nguyên.
\(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\left(x\ne0;y\ne0;x\ne-1\right)\)
\(\Rightarrow x-\dfrac{1}{y}-\dfrac{4}{xy}+1=0\)
\(\Rightarrow\dfrac{x^2y}{xy}-\dfrac{x}{xy}-\dfrac{4}{xy}+\dfrac{xy}{xy}=0\)
\(\Rightarrow x^2y-x-4+xy=0\)
\(\Rightarrow xy\left(x+1\right)=x+4\)
\(\Rightarrow y=\dfrac{x+4}{x\left(x+1\right)}\)
-Vì x,y nguyên:
\(\Rightarrow\left(x+4\right)⋮\left[x\left(x+1\right)\right]\)
\(\Rightarrow\left(x+4\right)⋮x\) và \(\left(x+4\right)⋮\left(x+1\right)\)
\(\Rightarrow4⋮x\) và \(\left(x+1+3\right)⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(3⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x+1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x\in\left\{0;-2;2;-4\right\}\)
\(\Rightarrow x\in\left\{2;-2;-4\right\}\)
*\(x=2\Rightarrow y=\dfrac{2+4}{2.\left(2+1\right)}=1\)
\(x=-2\Rightarrow y=\dfrac{-2+4}{-2.\left(-2+1\right)}=1\)
\(x=-4\Rightarrow y=\dfrac{-4+4}{-4.\left(-4+1\right)}=0\left(loại\right)\)
-Vậy các cặp số (x,y) là: \(\left(2,1\right);\left(-2,1\right)\)
\(x^2+4x+5=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\)
Ta có:
\(\left(x+2\right)^2\text{≡}0,1\left(mod3\right)\)
\(1\text{≡}1\left(mod3\right)\)
\(\Rightarrow\left(x+2\right)^2+1\text{≡}1,2\left(mod3\right)\)
\(\Rightarrow\left(x+2\right)^2+1\) không chia hết cho 3
\(\Rightarrow x^2+4x+5\) không chia hết cho 3
Ta có:\(\left|x-1\right|\ge0;\forall x\)
\(\left|x+2\right|\ge0;\forall x\)
\(\left|x-3\right|\ge0;\forall x\)
\(\left|x+4\right|\ge0;\forall x\) ......
Cộng tất cả ta được:
\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)
\(\Rightarrow Min_T=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)
gợi ý đi .-.
gợi ý thì còn 7 coins